Private Queries in Location-Based Services:

Anonymizers are Not Necessary
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Location-Based Services (LBS)

Problem Statement

Queries may disclose sensitive information
= Query through anonymous web surfing service

But user location may disclose identity
= Triangulation of device signal

= Publicly available databases

= Physical surveillance

How to preserve query source anonymity?
= Even when exact user locations are known

LBS users “Find closest hospital to
my present location”
= Mobile devices with GPS
capabilities e e .
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= Computationally hard to find i from q(i)
= Bob can easily find X; from r (trap-door)

Existing LBS Privacy
Solutions

Spatial K-Anonymity

Query issuer “hides” among other K-1 users
= Probability of identifying query source < 1/K
= Idea: anonymizing spatial regions (ASR)
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Casper[MokO()]
Quad-tree based
= Fails to preserve anonymity for outliers
= Unnecessarily large ASR size
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[Mok06] - Mokbel et al, The New Casper: Query Processing for Location Services without Compromising
Privacy, VLDB 2006
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Hilbert Cloak (HC)
Based on Hilbert space-filling curve
= index users by Hilbert value of location
= partition Hilbert sequence into “K-buckets”
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Space Encryption!SV7]

Drawbacks
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[KS07] A. Khoshgozaran, C. Shahabi. Blind Evaluation of Nearest Neighbor Queries Using Space
Transformation to Preserve Location Privacy , In Proc. Of SSTD 2007

Reciprocity

eu, ® us

[KGMP07] - Kalnis P., Ghinita G., Mouratidis K., Papadias D., "Preventing Location-Based Identity Inference
in Anonymous Spatial Queries", IEEE TKDE 2007.

[CMO7]

i Problems

= ASRs grows large

= Qpery droppegeitisome yr in U discornects |
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[CMO07] C.-Y. Chow and M. Mokbel “Enabling Private Continuous Queries For Revealed User Locations”. In
Proc. of SSTD 2007

Motivation

Limitations of existing solutions

= Assumption of trusted entities
anonymizer and trusted, non-colluding users

= Considerable overhead for sporadic benefits
maintenance of user locations

= No privacy guarantees
especially for continuous queries
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Our Approach
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PIR Theoretical Foundations

= Let N =g,*q,, g, and g, large primes
Zy = {x € Zy|ged(N,z) = 1}

QR={yeZy|3reZy 1y =2 mod N}

= Quadratic Residuosity Assumption (QRA)
QR/QNR decision computationally hard
Essential properties:
QR *QR = QR
QR * QNR = QNR
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Approximate Nearest Neighbor
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= Data organized as a square matrix
Each column corresponds to index leaf
An entire leaf is retrieved - the closest to the user

LBS Privacy with PIR

PIR

= Two-party cryptographic protocol
No trusted anonymizer required
No trusted users required

= No pooling of a large user population required
No need for location updates

= Location data completely obscured
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PIR Protocol for Binary Data
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Exact Nearest Neighbor
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Avoiding Redundant Computations
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Data mining
= Identify frequent partial products
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Experimental Settings
Sequoia dataset + synthetic sets
= 10,000 to 100,000 POI
Modulus up to 1280 bits
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Computation/Communication
Overhead (Exact)

Figure 20 Variable dota size, k = 768 bits
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Parallelize Computation

Values of z can be computed in parallel
= Master-slave paradigm
= Offline phase: master scatters PIR matrix
= Online phase:

Master broadcasts y

Each worker computes z values for its strip
Master collects z results
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Computation/Communication
Overhead (Approximate)
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Figure 17: Variable dota size, k= 768 hits
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Parallel Execution
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Data Mining Optimization
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Disclosed POI
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Discussion

Given the parallelization, compression,
multiplication reduction, rectangular shape
M, how much is
communication/computation saved?

How do you compare the previous two
approaches?

What do *you* think is the major
challenge in achieving privacy-aware LBS?

Privacy Efficiency
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Conclusions
PIR-based LBS privacy
= No need to trust third-party
= Secure against any location-based attack
Future work
= Further reduce PIR overhead
= Support more complex queries
= Include more POI information in the reply
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Reciprocity

Consider querying user u, and ASR A,
Let AS, = {set of users enclosed by A}

A, has the reciprocity property iff
i |AS| =K
ii. Yu,u; eAS, u; € AS; A U; € AS;

eu, ® Uu;

eu,

eus
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[KGMPO7] - Kalnis P., Ghinita G., Mouratidis K., Papadias D., "Preventing Location-Based Identity Inference
in Anonymous Spatial Queries", IEEE TKDE 2007.
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Continuous Queties/CM07)

Extends reciprocity to moving clients

m Let A, be ASR at time t,, let U be the users in A,
= At time t;, ASR is MBR of U (at new locations)
Problems

= ASR grows large

= Query dropped if some user in U disconnects

[CMO7] C.-Y. Chow and M. Mokbel “Enabling Private Continuous Queries For Revealed User Locations”. In
Proc. of SSTD 2007
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Space Encryption!®507]

Does not employ SKA
= each POI is mapped to 1-D value (Hilbert)

fractal parameters are kept secret
= answers are approximate
= makes use of tamper-resistant devices

= may be vulnerable if some POI are known

[KS07] A. Khoshgozaran, C. Shahabi. Blind Evaluation of Nearest Neighbor Queries Using Space
Transformation to Preserve Location Privacy , In Proc. Of SSTD 2007
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Server Computation Overhead
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Rectangular PIR Matrix
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Approximation Error
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