Conceptual Partitioning: An
Efficient Method for Continuous
Nearest Neighber Monitoring

By: Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias
SIGMOD Conference, 2005

Presented by Kaveh Shahabi

CS 599 - Geospatial Information Management - Fall ‘og
Sep 16, 2009

Intreduction::Background

NN: Finding the nearest
neighbor to a query point in
space

Applications in GIS, Vision,
Database, etc.

kNN: returns top k nodes
closest to the query point.

Introduction
Background, Definition, Motivation
Related Work
Safe Regions, Approximation, YPK-CNN, SEA-CNN
CPM
NN module, Data structure, Handling Updates, Multiple Updates
ANNs
Analysis
Analytical, Qualitative
Results
Conclusion

9/23/2009

Intraduction::Definition

CNN: Continuous Nearest Neighbor search
Snapshot: One line query (B1 paper)
Continuous: A series of queries and a monitoring system

CkNN: the kth first CNN results

Application: Continuously
locating nearest gas stations
while driving in a road

Introduction::Motivation

Related Work

CPM: Conceptual Partitioning and Monitoring

Enhancing the performance and memory
consumption in CNN searches

Extend to highly dynamic environments

Extend for other types of queries (e.g. ANN)

Snapshot: using an offline algorithm, all results are
computed at once given the whole input

Monitoring: The client continuously asks for NN
and a monitoring system on server should be
optimized for
such a case.

Table 2.1: Proper

Related Work::Safe Regions

9/23/2009

Related Work::Approximation

Zhang et. al.: Defines a region around query point
(Voronai cell or expiry time) were re-computation is
not necessary

Q-index: a list of updates that influence a query is
being kept using an R-tree

MQM: Each object has a ¢
resident domain assigned by region
the server c

YPK-CNN

Yu et al. [YPKos]: regular grid cells with fixed size
S x b asindex

Applies the updates directly and re-evaluates
queries every T time units

First time queries; a 2 step NN search
Returning queries; update/re-sort points inside the
query region

Koudas et al.: e-approximation kNN over streams of
points

"The returned k' NN lies at most e distance units
farther from q than the actual kh NN of g”

Is flexible with memory: more memory smaller e

Both snapshot and continuous ekNN

YPK-CNN

NN Module: Starts with a rectangle around g, then
doubles the nearest distance and creates another
box and continues till it finds k neighbors.

R=2xXdy+8 P Py

max

YPK-CNN

NN Module: Starts with a rectangle around g, then
doubles the nearest distance and creates another
box and continues till it finds k neighbors.

R=2xd,, +8 Py Ps

max

YPK-CNN

NN Module: Starts with a rectangle around g, then
doubles the nearest distance and creates another
box and continues till it finds k neighbors.

R=2Xdy+8 P Py

max

9/23/2009

YPK-CNN YPK-CNN

NN Module: Starts with a rectangle around g, then NN Module: Starts with a rectangle around g, then
doubles the nearest distance and creates another doubles the nearest distance and creates another
box and continues till it finds k neighbors. box and continues till it finds k neighbors.
R=2xd.,+& Poe. Ps R=2xd., +& P Pe
P. Py P, Py
Rl P, " P P, K| P,
6; Pao P. Pio
Ps Ps
Py Py

YPK-CNN YPK-CNN

Update Handling: Assume p, moves. Now d, ., is Update Handling: Assume p, moves. Now d, ., is
max distance of previously discovered neighbors max distance of previously discovered neighbors
R=2xd,, +8 Py Ps R=2xd,, +8 Py Ps

P P, P P,

I P, [q P,

P. Pao P> P. Pio
P P
Py Py

YPK-CNN SEA-CMN

Update Handling: Assume p, moves. Now d,,,, is SEA-CNN.: Exclusively focuses on monitoring
max distance of previously discovered neighbors. without any first-time NN module. It also handles
Only one rectangle needed. the special case of no neighbor node moving out.
R=2xd_, +8 P & * Uses circles instead of P P
P. Py rectangles P. Py
« Circle radius is the
—%q p. distance of the k™" NN P, " p.
P P P) P Pao
« Ifthere is no node
moving out then special
Ps case otherwise similar to Ps
Py YPK-CNN Py Ts

SEA-CNN

SEA-CNN

9/23/2009

SEA-CNN.: Exclusively focuses on monitoring

without any first-time NN module. It also handles
the special case of no neighbor node moving out.

* Uses circles instead of
rectangles

« Circle radius is the
distance of the k™ NN

« Ifthere is no node
moving out then special
case otherwise similar to
YPK-CNN

P

Pg

SEA-CNN

SEA-CNN.: Exclusively focuses on monitoring

without any first-time NN module. It also handles
the special case of no neighbor node moving out.

* Uses circles instead of
rectangles

* Circle radius is the
distance of the k™ NN

« Ifthere is no node
moving out then special
case otherwise similar to
YPK-CNN

Py

Ps

SEA-CNN.: Exclusively focuses on monitoring

without any first-time NN module. It also handles
the special case of no neighbor node moving out.

* Uses circles instead of
rectangles

* Circle radius is the
distance of the k™" NN

« Ifthere is no node
moving out then special
case otherwise similar to
YPK-CNN

P

|Pa

P,

Py

Ps

Py

s

SEA-CNN

SEA-CNN.: Exclusively focuses on monitoring

without any first-time NN module. It also handles
the special case of no neighbor node moving out.

* Uses circles instead of
rectangles

« Circle radius is the
distance of the k™" NN

* Ifthere is no node
moving out then special
case otherwise similar to
YPK-CNN

P

Pg

P

P,

P,

Py

Py

s

SEA-CNN

SEA-CNN.: Exclusively focuses on monitoring

without any first-time NN module. It also handles
the special case of no neighbor node moving out.

* Uses circles instead of
rectangles

* Circle radius is the
distance of the k™ NN

« Ifthere is no node
moving out then special
case otherwise similar to
YPK-CNN

P, Ps
P P,
P, [P
D] Pso
Ps
Py ls

SEA-CMN

SEA-CNN.: Exclusively focuses on monitoring

without any first-time NN module. It also handles
the special case of no neighbor node moving out.

* Uses circles instead of
rectangles

« Circle radius is the
distance of the k™" NN

* Ifthere is no node
moving out then special
case otherwise similar to
YPK-CNN

P

Pg

P

Py

P,

P

Py

s

CPM::NN Module

9/23/2009

CPM::NN Module

Same grid cell with fixed size index structure.
Uses circles to search cells (rectangles).

If min_dist of a cell (rectangle) is larger than
or equal to the distance of the discovered

node (ky, NN) then omit the cell.

Terminates after discovering k NNs.

CPM::NN Module

NAIVE APPROACH RECTANGLES

Main contribution is the
rectangle shaped cells on
the grid to index objects

T

,v_.:;':ﬂ-e.q } o
1 - L] £ 2 | NERt
o

CPM::NN Maodule

Insert each rectangle starting from lower level into a
heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

Lemma: each rectangle P; Pg
min_dist increases by § P Py
from one level to the
upper level. P, *q P
P. Pio
P
p, ls

CPM::NN Module

Insert each rectangle starting from lower level into a
heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

Insert level zero into Py Py
heap p. P,
P, q P
P. Pio
P
P, ls

CPM::NN Module

Insert each rectangle starting from lower level into a
heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

Insert level zero into Py Pg
heap P. P,
P, q P.
P. Pio
Ps
Py $5

Insert each rectangle starting from lower level into a
heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

De-heap C, -> empty Py Ps
De-heap U, -> 2 cells P P,
P, K P
P. Pio
P
Py $5

CPM::NN Module

CPM::NN Module

9/23/2009

Insert each rectangle starting from lower level into a
heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

De-heap until the first non- P; Pg
empty cell -> Cp, P P,
Level=1
best_dist = dist(p,,q) = 1.7 P, t*q P
5. P
Ps
Py $5

CPM::NN Module

Insert each rectangle starting from lower level into a

heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

The next item in heap P; Pg
(R,) has key lower than P Py
1.7 so it de-heaps

P, g P.

Py Pio
Ps
Py $5

CPM::NN Maodule

Insert each rectangle starting from lower level into a
heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

Continue inserting (en- Py Ps
heap) rectangles of level P3 Py
one in the heap. Then
extract again from top p, “q p,
and re-insert cells b, Pao
Ps
Py ls

CPM::Data Structure

For each query the heap, closed (visited) list, k™ NN
distance, and the NNs are being kept

For each cell only the objects inside and the
associated queries are being kept

() Quiery table (1) Object grid

Insert each rectangle starting from lower level into a

heap with its min_dist. Same with cells. De-heap
and extract them and add them to visit list.

de-heap cells until it P; Pg
hits Cp, Py P,
dist(p2,q) =1.3

P2

At this point the
algorithm will stop
because heap root
node is Cp, which has
key larger than 1.3

Py Pio
Ps
Py ls

CPM::Handling Updates

If an object moves in to a query region (circle with
radius best_dist) then best_NNs just need to be re-
ordered including the new object

CPM::Handlinqg Updates

CPM::Handling Updates

9/23/2009

If it moves out then query need re-computation.
Re-computation will continue from previous heap until next
NN with distance lower than heap root node key

Initials previous heap : P; Ps
and visit list with P p.
updated objects
‘g P
Py Py Pio
Ps
Py s

CPM::Handling Updates

If it moves out then query need re-computation.
Re-computation will continue from previous heap until next
NN with distance lower than heap root node key

Since there are no more Py Py
non-empty cells in this P Py
circle the search will /
terminate with no more \ 'i}\ p.
addition to the visit list B P, Poo
Ps
Py ls

If it moves out then query need re-computation.
Re-computation will continue from previous heap until next
NN with distance lower than heap root node key

Re-visit cells first from - Py Pg
visit list and then put P P.
into original heap until
it hits Cp’, i p.
Py Py Pio
Ps
Py $5

CPM::Multiple Updates

CPM::Multiple Updates

The mentioned approach is not efficient
because:

Updates may cancel each other
We may have more updates than queries

When to re-compute? Timestamp, trig by
updates, trig by returning query?

Other types of Queries (ANN)

The general solution is to keep a list of new nodes that
entered a query region (I) and the outgoing ones (O). When a
query returns, if |I| >= |O| then it means we still have enough
NNs in best_NN to be able to re-order, else query needs re-
computation.

1 1)
[=

i,

ftiehce negion

(a) pry and py wsue updates () gy becomes the NN of ¢

Aggregate Nearest Neighbor: “Given a set of query points
Q={q1,qg2,...,gm}, a sum ANN query continuously reports
the data object p that minimizes adist(p,Q) = 2qi€Q
dist(p,qi)”.

In simple English: where
should we all meet minimizing
the total traveling distance

Other types of Queries (ANN)

ANN with CPM: make a MBR around all query points and
then have the rectangles around them. The only difference is
instead of distance we use sum of distances as the heap key.

(a) Partitioning inta rectangles (b} Influence segion

They showed & = 1/128 (of the grid) is the optimal
cell size using experimental results.

Almost no effect from number of objects and
queries

Results from object and query speed

And object / query agility (percentage of objects
that move within a timestamp)

9/23/2009

Analysis

The authors of the paper analytically calculated the
time and space complexity of each operation with
the assumption of uniformly distributed objects and
arbitrary query points.

They also qualitatively compared it with YPK-CNN
and SEA-CNN.

Later they matched these claims with experimental
results.

/ —M-CPM —AYPK-CNN —@-SEA-CNN

197] Cell sccesses e —1

1 4

Bmi‘f 0% ®ow Nimmber of NNs
(a) CPU time (b) Cell accesses
K Figure 6.3: Performance versus &

—-CPM —A—YPK-CNN —@-SEA-CNN
r

A

-
/ ,/"
-) -

-

IR INK WK
Number of objects
(a) Effectof N (b) Effect of n
\ Figure 6.2: CPU time versus N and n

—M-CPM —AYPK-CNN —@-SEA-CNN

. Matim e
Object speed Query speed.
(a) Effect of object speed (b) Effect of query speed

Figure 6.4: CPU time versus object and query speed

9/23/2009

—-CPM —&YPK-CNN —#-SEA-CNN

T 1 CPU time.

- y——a—a

o omw o oww wm W % X% s o
Object agility Query agiliry

(a) Effect of object agility () (b) Effect of query agility (f,,)

\ Figure 6.5: CPU time versus object and query agility /

R ——

Conclusion

CNN algorithm with minimal overhead for repeated queries
Monitoring system

Useable for ANN queries

Can handle user-constrained NN search (e.qg. specific region)

No knowledge about moving objects and speed is required

—M-CPM —AYPK-CNN —@-SEA-CNN

e e |
108 0w WE 1R MK W OWE N8 R
Number of obejcts Number of abgjars
(a) Constantly moving queries (b) Static queries

Figure 6.6: CPU time for constantly moving and static queries

Thank you for your attendance

