
10/5/2009

1

By:

Scalable Network Distance Browsing in Spatial
Databases

-Hanan Samet, Jagan Sankaranarayanan, Houman
Alborzi, SIGMOD ‘08

By:
Nakul Desai

Outline
Introduction to Spatial Networks and Network
Distances
Conventional Algorithms for Nearest Neighbor
Queries in SNDB
Shortest-Path Quadtrees
Morton Blocks
Distance Encoding
Best-first k NN algorithm
Execution and space requirements
Experimental Results
Conclusion
References

Introduction to Road Networks and
Network Distances

dS = 10
m

dN = 11 m

dS = 5 m

dN = 22 m

d = 11 m

d = 4 m
d = 7 m

Contd…
Mapping services such as google maps require a real-
time response to queries such as finding shortest
routes between any two locations along a spatial
network.

Contd…
Requirement for a real-time response prevents the use of
conventional graph based algorithms like IER and INE that
utilize Dijkstra’s algorithm in some part of their solution.
Problem with Dijkstra’s algorithm: It examines every
vertex closer to query point ‘q’ via the shortest-path from ‘q’
rather than visiting the vertices associated with the desired
bj t i th l ith i it ti b fobjects i.e. the algorithm visits many vertices before

reaching the one we are interested in.

Contd…
GOAL: To examine only those vertices that are lie on the shortest-
path from ‘q’ to the object.

i.e. An algorithm that would take O(k) time to find the shortest-path
between vertices of a spatial network, where ‘k’ is the number of
vertices that lie on the shortest path.
The algorithm is based on pre-computing the shortest-path distances
between every pair of vertices in the spatial network and storing it
along with the path information efficiently using some form of
encoding.
It uses a best first approach to finding the K Nearest Neighbors to a
query point ‘q’.

10/5/2009

2

IER (Incremental Euclidean Restriction)
Based on the fact that dS (q, v) ≤ dN (q, v). i.e the Euclidean distance
lower bounds the Network Distance.
First retrieve the Euclidean NN ‘v1’ to ‘q’ using the R-tree based NN
algorithm.
Compute the Network Distance ‘dN (q, v1)’ using Dijkstra’s algorithm.
Due to the Euclidean Lower Bound Property, objects closer to q than v1
must lie within the Euclidean distance dSMAX = dN (q,v1) i.e in the shaded
region.

q

v1

dSMax = dN (q,v1)

dN (q,v1)

dS (q,v1)

q

v2

v1

dS
(q,v2)

dN (q,v2)

v2

dSMax = dN (q,v2)
v3

• Since dN (q,v2) < dN (q,v1), v2 becomes the current NN and dSMAX is updated
accordingly.
• The next Euclidean NN ‘v3’ falls out of the shaded region i.e its dS (q,v3) > dN
(q,v2), the algorithm terminates with v2 as the NN.
• This can be extended to k NN accordingly by considering dSMAX = dN (q,vk), where
vk is the kth Euclidean NN of q.

Representing shortest path information
Using Adjacency Lists:

Adj (u) = { (v1,v2,v3), (v4,v5), (v6,v7,v8,v9), … }

w1 w2 w3

v4v3

u

w1

w2

w3

v6

v7

v8

v9

v5

v1

v2

Representing shortest path information
Drawbacks of Adjacency Lists:
Absence of index Searches are sequencial
Space Requirement for each List is O(N).

Solution Shortest path Map

v4v3

u

w1

w2

w3

v6

v7

v8

v9

v5

v1

v2

Region
R2

• Each element of the Adjacency List has some spatial coherence in the sense that
they are in close spatial proximity.
• Thus each element can be viewed as a region ‘ri ‘ corresponding to a vertex ‘wi ‘ to
which ‘u’ is connected by means of an edge ‘ei ‘.
• We can now replace the adjacency list by a map corresponding to the vertex ‘u’
termed as the shortest-path map.

Region
R1

Region
R3

• The advantage of grouping vertices on the basis of the regions in which they lie
and identifying each region by the first vertex on the shortest-path into it from
vertex ‘u’ is that we can now make use of point location operations to determine the
region that contains the destination vertex.
• We can now find the shortest path to a group of vertices.
• The regions can now be index based on a spatial index structure such as the
region Quadtree.
• Can we use R-trees ?

v4v3

u

w1

w2

w3

v6 v8

v9

v1

v7

v2

v5

10/5/2009

3

Shortest Path Quadtree

v4v3

1) Color-coding the map
2) Store the regions in a region Quadtree
3) Represent the regions by a Morton Block

u

w1

w2

w3

v6

v7

v8

v9

v5

v1

v2

Morton Blocks
• A Morton Block is an Integer representing a Quadtree block.
• It is based on the Morton Order or the Z-Order, which is a space filling curve that
that visits all the points in 2-D space exactly once in a predetermined order.
• A mapping from 2-D space to a 1-D space of Integers.

• A link and a distance interval are associated with each morton block.
• The procedure to form morton blocks is as below:
Procedure Mortonize[u, T]

Input: u є V , T is a Region Quadtree on V
Output: MortonList: list of Morton blocks with associated links and distance
intervals
1. MortonList empty
2. for each leaf-block ‘b’ є T visited in Morton-order do
3. if all points v in b are of same color then
4. append b to MortonList
5. else
6 recursively split b until S the resultant set of blocks is single colored6. recursively split b until S, the resultant set of blocks, is single colored
7. merge S with MortonList
8. while Morton blocks can be merged do
9. merge sibling blocks if of the same color
10. for each Morton block b є MortonList do
11.λ‐‐ = Minimum ratio of the network distance (dN (u,v)) to the spatial distance
(dS (u,v)) from u to all the destination vertices in morton block b
12.λ+ = Maximum ratio of the network distance (dN (u,v)) to the spatial distance
(dS (u,v)) from u to all the destination vertices in morton block b
13.Associate (λ‐‐ , λ+) with b
14.Return Morton list.

Retrieving the Shortest Path
• Given a source vertex ‘s’ , a destination vertex ‘d’, the next link ‘t’ in the
shortest path between s and d is obtained by performing a simple binary
search for a morton block containing d from the morton list.
• Since each morton block for a vertex s is associated with a link,

t b.link
• Now t is the next link after s in the shortest path between s and v.
• The above algorithm is repeated until v is obtained.
• dist = dist + dN (s,t)
• The shortest path between s and d requires exactly k steps, where,

k = |No of vertices in the shortest path between s and d |

Distance Encoding
Most spatial applications require an approximate estimate of the distance
between two vertices u and v on a spatial network.

λ– dS (u,v) ≤ dN (u,v) ≤ λ+ dS (u,v)

Since λ– and λ+ are associated with a morton block ‘b’ , given vertices u and v
an initial Interval dN (u,v) is made available for the shortest path distance
between u and v.

Block b
2

10
57

2

2

λ– dS (u,v) = 15

λ+ dS (u,v) = 21

10/5/2009

4

Refining the distance
This is done to tighten the distance interval by expending some work.

1)Find the next link ‘t’ after an intermediate vertex u in the shortest path
from s to v.
2)The distance interval is improved by taking the intersection of the initial
interval between s and v, with the interval obtained using t.
3)δ-- = max(δ-- , λ– dS (t,v) + d)
4)δ+ = min(δ+ , λ+ dS (t,v) + d)
5)Thus, after the previous step,

δ ≤ d () ≤ δ+δ-- ≤ dN (s,v) ≤ δ+ .

6) When the interval converges to a single values, we get the network
distance dN (s,v).
7)The distance Interval is sufficient in most cases where only relative
positions of objects need to be determined.
8)The nearest neighbor to a query object q, is a neighbor p whose upper
distance bound provided by its distance interval is less than the lower
distance bound of all other objects in the dataset.

Finding The Network Distance Interval for a Region R

Procedure IntervalDist [v, R, MortonList]
Input: R is a region, v is a vertex
Input: MortonList is the path encoding for v
Output: d = (δ--, δ+) forms the distance
interval
1. for each b є MortonList intersecting R do
2. Retrieve λ‐‐ and λ+ from b
3. r intersection of b and R
4. μ_ = λ– X MINDIST(v,r)
5 + λ+ X MAXDIST()

R

5. μ+ = λ+ X MAXDIST(v,r)
6. Return UNION of all (μ_ , μ+)

b

v

Best-first K Nearest Neighbor Algorithm
1) Use a Priority Q to store points and morton blocks based on the
distance interval.
2) If the object is a point, a few additional pieces of information such as an
intermediate vertex u in the shortest path from s to q and the distance d
from s to u
3) Q is initialized by putting the root of the spatial data structure containing
the set of objects.
4) At each iteration of the algorithm, the top element in Q is examined.
5) If the element is a LEAF block, then it is replaced with all the points
contained in the block.
6) If it is a NON-LEAF block then all of its children are inserted into Q.
7) If a point ‘p’ is found then the distance interval of p is checked with the
top element of the Q for possible collisions.
8) A collision occurs when the distance interval of p intersects with the
distance interval of the top element of the queue. When this happens, the
distance interval of p is refined and re-inserted back into the Q.
9) If the distance interval of p is non-intersecting , then p is reported as the
NN of q.
10) This can be extended to k NN.

Execution Time and Space Rquirements
The worst case execution time is proportional to the number of
objects examined and the number of links on the shortest paths to
them from q
The shortest-path quadtree for vertex u, requires O(p+n) space,
where p is the sum of the perimeters of the polygons corresponding
to the regions that make up the shortest-path map of u, and the map
is embedded in a 2n X 2n space.
Using the above two theorems the main result is stated as below:g
The total number of quadtree leaf blocks in the shortest path
quadtrees for a spatial network with N vertices is O(N1.5).

Experimental Results Conclusion

The key advantage of this method over IER and other methods is that
the shortest-path between the various vertices in the spatial network
are computed only once, whereas in the methods based on Dijkstra’s
algoirthm they are computed repeatedly as the query object or its
neighbors move. Hence more suited to obtaining real-time results.
Also this algorithm is preferable when many queries are made on a
particular spatial network.
A key advantage of this algorithm is that it can be used with different y g g
sets of objects as long as the underlying spatial network is unchanged.
i.e the set S of objects from which the neighbors are drawn is
decoupled from the actual spatial network. The shortest-path quadtree
for the spatial network can be used to store hotels, gas stations or any
other objects.

10/5/2009

5

References

J. Sankaranarayanan, H. Alborzi, and H. Samet.
Efcient
query processing on spatial networks. In ACM GIS'05,
pp.
200.209, Bremen, Germany, Nov. 2005.
D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. p , g, ,
Query
processing in spatial network databases. In VLDB'03,
pp.
802.813, Berlin, Germany, Sep. 2003.
Ashraf Aboulnaga , Walid G. Aref . Window Query
Processing in Linear Quadtrees

