9/28/2009

Continuous Nearest Neighbor Monitoring in
Road Networks

K. Mouratidis! M.L. Yiu2, D. Papadias®, N. Mamoulis?

Afsin Akdogan

University of Southern California
Computer Science Department

USC

Introduction

The k-NN problem: Given a query point g and a set of objects
P, find the k objects in P that are closest to q.

Introduction

Existing methods are designed for Euclidean spaces.

Consider a road network (where edge weights correspond
to their length, or travel time). Queries and objects move in

the networ|
-0

Network distance between [N1,N3] =
————— [N1,N2] + [N2,N3]

Network distance: the length (i.e., sum of weights) of the
shortest path connecting them. (Example: taxi — pedestrians)

Ps Pa
o}
Ps
p$ o)
O Ps
o pl
O pr
Introduction

Continuous NN monitoring in a Road Network:

Queries and objects move in an unpredictable manner in the
network, issuing an update whenever they move

Network edges issue weight updates

Central server processes the stream of updates, and
continuously reports the k NNs of each query according
to network distance

Sample query:

Sample Query

pedestrian: query and taxis: data objects.
- show me 2 closest taxis”

|
el

g2

o
el

Objects and queries move in an unpredictable
manner to different directions with different
speeds.

Related Work

Euclidean NN monitoring: Yu et al. ICDE’05, Xiong et al.
ICDE’05, Mouratidis et al. SIGMOD’05

YPK-CNN, SEA-CNN and CPM algorithms

- Search in the cells around query

- Grid index: cannot capture network-imposed constraints
- Circles/rectangles: no mapping to network distance space
- Do not deal with edge updates

Snapshot NN in road networks: e.g., Papadias et al.
VLDB’03, Kolahdouzan and Shahabi VLDB’04

- Static data objects, One-time results

Incremental Monitoring (IMA) and Group
Monitoring (GMA) Algorithms

Two methods (IMA, GMA) for: monitoring NNs according to
network distance, with low CPU cost.

Edges: indexed with a quad-tree.
Store each edge with

(i)the objects in it

(if)an influence list

Queries: For each query we store its current NNs, and its
expansion tree. (Memory consumption)

9/28/2009

IMA: Initial NN computation
Initial result (k=3): expansion tree, infl. intervals, and marks

fe e KNN_dist = 7
"1‘0\| n,(6) nA3) I ng ny6) n,

n;=9
n,(4) Py
n,2)
n,2 ——
® 1 An gdge e affects q,

q.KNN_dist = The network distance of furthest NN from g Ir:{;:f;m';seiﬂe
g= root. Retrieves KNNs with Dijkstra algorithm network dist is less

i : - than g.k-NN
Store q in influence lists of affecting edges Parts until marks are
Terminates when the next node has weight larger than q.kNN_dist valid.

Types of Object Updates

Only updates affecting the expansion tree can alter the result! (p5 not)

(i) Current NNs moving within distance g.kNN_dist from q (e.g., p3)

(ii) Incoming object: used to lie further than q.kNN_dist but their new location is
closer to g than g.kNN_dist (e.g., p4)

(iii) Outgoing object: current NNs moving further away than q.kNN_dist from g
(e.g., p1)

IMA: Object updates (Case 1)

Outgoing no more than incoming NNs:

In brief: update result
and

. e - shrink expansion tree
At least k objects within distance g.kNN_dist

Remove outgoing NNs (p1)
Calculate union of remaining NNs and incoming objects ((p3’,p2) U p4’)
Report best k among them

IMA: Object updates (Case 1)

New (shrunk) expansion tree

New q.kNN_dist

IMA: Object updates (Case 2)

More outgoing than incoming:

In brief: re-compute
from marks (not from q.

P it speeds things up)
L and
Fewer k objects within Uistance g.kNN expand tree

Notice: g.Tree grows according to the new q.kNN_dist !

IMA: Object updates (Case 2)

New (grown) expansion tree

New g.kNN_dist

9/28/2009

IMA: Query updates
Re-compute starting from valid tree marks

Valid expansion tree nS is reachable via a
shorter path

Sub-tree g’ remains
valid and NNs as well.
They are just subject to
some trivial distance
updates. The rest of
the tree is discarded

IMA: Edge updates - Weight increase

There might exist shorter alternatives paths to objects in sub-tree

Invalid expansion tree
n9 is reachable via shorter path 2

IMA: Edge updates - Weight decrease

Valid because all nodes therein become shorter by 2 units

1(6)

Updated Edge
old=3new=1 New Marks

ny(3)

QUESTION: Why did we set the new marks?

s

Marks show valid parts. The update can NOT affect the paths
to nodes/objects that lie closer than d(n7,q)=3, because any
path passing through n1n7 has length at least d(n7,q)

GMA: Main idea

Intersection node: degree above 2 (e.g., n1, n2, n5)
Terminal node: degree 1 (e.g., n8, n9, n4, n3)

Sequence: path between consecutive intersection or terminal nodes
{nlns}x{m”wn7“’61~”6”5}r{“2n5}---n
o

6 ns hy
1
ng n;
[2 4
n n>

@ 7
Lemma 1: The k—N?\l set of any query in sequence s is in the
union of (i) the objects in s, (ii) the k-NNs of its intersection
nodes (endpoints).

1
rmation Man

GMA: Main idea (example)

Main idea
GMA groups together the
queries falling in the same
sequence and monitors
static nodes (at the
endpoints of the
sequence), instead of each
query individually

[3]

Objects on sequence between n; and n; = {p,, ps}
2-NNs of intersection n; = {p;, ps}
2-NNs of intersection ng = {ps, p,}

2-NNsof g, or g, € {ps ps} Y {p1, Ps} Y {ps, P2}
n.k = the max number of NNs required by any query in n.Q

GMA: Active nodes

active node: a node n is active if n is the endpoint on any
sequence that has at least 1 query (e.g., n1, n5)

GMA monitors the k-NNs of active nodes (using IMA), and
uses them to compute the NNs of the actual user queries

GMA reduces CPU time by

(i) shared execution among queries in the same sequence

(ii) reduction from NN monitoring of moving queries to NN
monitoring of static active nodes.

9/28/2009

GMA: Initial Result (2NN of q,)

e

Xl Mark for g,
ns P P
. 0—69 o

i) "

® Mo

First Consider edge n,n; and add {p5} to g,.NN list

Among the 2 reached nodes (n, and n;) n, is closer so get NNs of n1 {p1, p5}
Search continues towards n5, next node on the path is n7

Currently g,.kNN_dist = d(p1, q1) and dist(n7,q1) < q,.kNN_dist

Search continues. Consider edge n7n6

Terminate at this point with NNs {p1,p5} since the next node n6 has d(n6,q1) >
q;.KNN_dist

Notice that as opposed to IMA, GMA does not store expansion tree for queries

9 91 B WM

GMA: Update processing

Initial Result: utilizing active node NNs

NN Maintenance: In every processing cycle do:
1. Update NNs of active nodes with IMA.

2. If NNs of active node n change, re-compute affected
queries in sequences adjacent to n

3. If object/edge updates occur in sequence s, re-compute
affected queries within sequence s

4. Re-compute moving queries

IMA vs. GMA

GMA outperforms IMA when

e (i) the number of queries is large with respect to the
number of query nodes.

Note: IMA stores an expansion tree for each query

¢ (ii) When the queries are concentrated in a small part
of the network.

Sample experimental results
No previous work.
OVH: re-computes from scratch.

3 - CPU time (sec)
—4-OVH -B-IMA —-4AGMA

1K 3K 5K 7K 10K
Number of queries

Sample experimental results

-4-OVvH -B-IMA -AGMA

1800 - gpace (KByte)
1600 -

1400 -
1200 -
1000 -
800 -
600 -
400 -

1 25 50 100 200
Number of NNs

9/28/2009

Summary

First work about Continuous NN monitoring in road
networks.

- No advance information about query/object moving patterns

- Edge weights fluctuate

Two methods:

IMA: processes each query individually. Stores an expansion
tree for each q.

GMA: groups queries falling in between 2 intersection.

GMA is faster and requires less space.

Thank you

Discussion

¢ IMA Edge update — Increase Weight
— Inefficient if edges close to root issue update

* IMA Object update which is out of expansion
tree

— No change on expansion tree but still some
computation: quad-tree might be traversed to find
if updated object is a part of any edge that falls
into some expansion tree

