

YPK-CNN, SEA-CNN and CPM algorithms - Search in the cells around query - Grid index: cannot capture network-imposed constraints - Circles/rectangles: no mapping to network distance space - Do not deal with edge updates Snapshot NN in road networks: e.g., Papadias et al. VLDB'03, Kolahdouzan and Shahabi VLDB'04 - Static data objects, One-time results

Related Work

Euclidean NN monitoring: Yu et al. ICDE'05, Xiong et al.

ICDE'05, Mouratidis et al. SIGMOD'05

Incremental Monitoring (IMA) and Group Monitoring (GMA) Algorithms

Two methods (IMA, GMA) for: monitoring NNs according to network distance, with low CPU cost.

Edges: indexed with a quad-tree.

Store each edge with

(i)the objects in it

(ii)an influence list

Queries: For each query we store its current NNs, and its expansion tree. (Memory consumption)

CS 599 - Geospatial Information Management

Types of Object Updates Only updates affecting the expansion tree can alter the result! (p5 not) P₃ P₄ P₄ (i) Current NNs moving within distance q.kNN_dist from q (e.g., p3) (ii) Incoming object: used to lie further than q.kNN_dist but their new location is closer to q than q.kNN_dist (e.g., p4) (iii) Outgoing object: current NNs moving further away than q.kNN_dist from q (e.g., p1)

GMA: Active nodes

active node: a node n is active if n is the endpoint on any sequence that has at least 1 query (e.g., n1, n5)

GMA monitors the k-NNs of active nodes (using IMA), and uses them to compute the NNs of the actual user queries

GMA reduces CPU time by

- (i) shared execution among queries in the same sequence
- (ii) reduction from NN monitoring of *moving* queries to NN monitoring of *static* active nodes.

5599 - Geospatial Information Management

GMA: Update processing

Initial Result: utilizing active node NNs

NN Maintenance: In every processing cycle do:

- 1. Update NNs of active nodes with IMA.
- 2. If NNs of active node *n* change, re-compute affected queries in sequences adjacent to *n*
- 3. If object/edge updates occur in sequence *s*, re-compute affected queries **within sequence** *s*
- 4. Re-compute moving queries

9 - Geospatial Information Management

IMA vs. GMA

GMA outperforms IMA when

- (i) the number of queries is large with respect to the number of query nodes.
 - Note: IMA stores an expansion tree for each query
- (ii) When the queries are concentrated in a small part of the network.

S 599 - Geospatial Information Management

Summary

First work about Continuous NN monitoring in road networks.

- No advance information about query/object moving patterns
- Edge weights fluctuate

Two methods:

IMA: processes each query individually. Stores an expansion tree for each q.

GMA: groups queries falling in between 2 intersection.

GMA is faster and requires less space.

ospatial Information Management

Discussion

- IMA Edge update Increase Weight

 Inefficient if edges close to root issue update
- IMA Object update which is out of expansion tree
 - No change on expansion tree but still some computation: quad-tree might be traversed to find if updated object is a part of any edge that falls into some expansion tree

CS 599 - Geospatial Information