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INTRODUCTION

Continuous Nearest Neighbor
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Why called “continuous?
Nearest neighbor of every points in the trajectory

PRELIMINARY -- POINT NN QUERIES

Branch and bound algorithms use mindist between
the query point g and an R-tree entry £ to prune
the search space:
— mindist(E, g) = The minimum distance between £and
q
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PRELIMINARY -- POINT NN QUERIES

Depth-first (DF) and Best-first (BF) algorithms
E: R-tree entry
q: query point
DF : choose the entrance with minimum min-dist
BF: choose the min among all those visited (heap)
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PRELIMINARY -- CONTINUOUS NEAREST NEIGHBOR
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Data: A set of points (P={a,6,¢d,£g,h})
Query: A line segment q=[s, €]
Result: The nearest neighbor (NN) of every point on g.

Result representation: {<a,[s,s,]>, <c,[sy,S,]>,
<fI[SZIS3]>I <hr [S3le]>}

9/23/2009

RELATED WORK — SAMPLING

Try to convert the continuous-NN to point-NN
Every point on the line -> unlimited points
Sampling

Drawback:

Sample Rate: low -> incorrect

Sample Rate: high -> overhead (still cannot guarantee
accuracy)

Time Parameterized queries
Output (R, T, C) : result, time period, changing point
Tao, Y., Papadias, D. Time Parameterized Queries in
Spatio-Temporal Databases. ACM SIGMOD, 2002.

RELATED WORK — TIME PARAMETERIZED NN
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Step 1: Find the NN of the start point s, i.e., point a.
Step 2: Use the TP technique to find: The first point
on the line segment (s;) where there is a change in
the NN (i.e., point c) will become the next NN

RELATED WORK — TP NN (CONT.)
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Step 3: Perform another TP NN to find:

Starting from s1, how far we need to travel for the
current NN (i.e., ¢) to change to £

Repeat this until we finish the entire segment.

RELATED WORK — TP NN (CONT.)

Intuitively: perpendicular bisector & [s,e] segment
Not only NN, but support k-NN
Still overhead: n times

Yufei Tao, Dimitris Papadias — E==) TP

CKNN - DEFINITION
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Goal: Find all split points(as well as the corresponding
NN for each partition) with a single traversal.

Split list: The set of split points (including s and e).
Vicinity circle: The circle that centers at split point s;
with radius dist(s;, 5;.NN)

We say a data point u covers a point s if u=s.NN. E.g.,
points a, ¢ cover segments [s, s1], [s1, s2]




CKNN — PROBLEM CHARACTERISTICS

Lemma 1: Given a split list SL {s; s, ..., 5/5,-;,% and a
new data point p, then: p covers some point on query
segment q if and only if p covers a split point.

perpendicular
b hisectar d
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CKNN - PROBLEM CHARACTERISTICS

Lemma 2: (Covering Continuity)
The split points covered by a point p are continuous.

Namely, if p covers split point s; but not s,_;(or s;,4),
then p cannot cover s;_; (or s;,;) for any value of j>1.
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CKNN - PROBLEM CHARACTERISTICS

How about the k-NN?
Lemma 1:Fit || Lemma 2 : Cannot Fit

Eg:
K=3

SI={s{ NN, =a.be), 5, (NN, =abd),
5NN, ;~a,e.d). s, (NN, ;~e.d/)}

CKNN — R-TREE ALGORITHM

General key notes:
Use branch-and-bound techniques to prune the
search space.
R-tree traverse principle:

oWhen a leaf entry (i.e., a data point) pis encountered,
SL is updated if p covers any split point (i.e., pis a
qualifying entry) — By Lemma 1.

o For an intermediate entry, We visit its subtree only if it
may contain any qualifying data point — Use heuristics.

Avoid accessing not qualified nodes

R-TREE ALGORITHM — HEURISTIC 1

Given an intermediate entry £and query segment g,

the sub-tree of £may contain qualifying points only if
mindist(E,q) < SLyaxp, Where SLyayp is the maximum

distance between a split point and its NN.

E

SLe{s((NN=a), 5, (NN=b). e (NN=b)}

Compute Mindist(E,q)

R-TREE ALGORITHM — HEURISTIC 2 (AFTER 1)

Given an intermediate entry £and query segment g,
the subtree of £must be searched if and only if there
exists a split point s;eSL such that dist(s;, s;.NN) >
mindist(s;, E).

E mindisiE,5,)
- o b
) . =
minelist{ £} Y S
mindisitF.q) f W,
PR VA N -
7 |5, ;
HitidisiE. e}
SL={s (NN=a),

5, LNN=b) e (NN=h){




R-TREE ALGORITHM — HEURISTIC 3 (ORDER)

Entries (satisfying heuristics 1 and 2) are accessed in
increasing order of their minimum distances to the
query segment g.

Sho b { NNa), ¢ LNN=a)) SL=Es {N¥=a). 5, (NN=e) e (LNN=¢)}

Before processing £, After processing £,
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R-TREE ALGORITHM — LEAF ENTRY

Input: New entry p, SL ={s;,...S;o}
1) retrieve the split points covered by p
2) update SL
Binary search: Start at s;, then s,...
Using bisector to judge the direction

isecior of segment gp
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CKNN — R-TREE ALGORITHM (EXAMPLE)

Depth First

~ SL={s( NN=#, 5,{ NN=/), e{ NN=¢)}
o e

ANALYSIS- COST MODEL FOR UNIFORM DATA

[ - -‘-'1 (=N)

Actual Search region Approximate Search region

An optimal algorithm on R-trees must access only
those nodes whose MBRs intersect the actual search
region (i.e., E1 but not E2).

To facilitate the analysis we focus on a more regular
(approximated) region

ANALYSIS — NODE ACCESS PROBABILITY

Extended region af £

Paccess Is the MBR of nodg £ EllL i
probability the =
MBR £ of a node )

Intersects the /s
search region | enl

Picrs (E.q)=area(Eyy ) =
md o+ EL-EL+2d o (EL 4 EL +qd)
+2g1(E1 | cos@|+EL,|sin@|)

ANALYSIS — COST MODEL (NODE ACCESS)
NA(CNN) = Z N, Precess (Ed,q)
_@ [7d 2 +EL+2-dy (2-El @}“
_...:_+2-;;_x-f-.'f[;co@-usina) J
Dataset cardinality N
R tree structure (Height: h)

The query length: q.
The orientation angle &
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ANALYSIS — COST MODEL (CONT.)

Hy =N-area(Ry gy ) = \( +2d g '!)

The number of distinct |
neighbors in the final result. -

CPU overhead comparison
TP: increase with nyy

This paper: increase with dataset size N, query
length I...

SL=[s NN, =ab), s A NN, =bs),
£ N, =bd), 2 NN, =d i}

OTHER CNN QUERY

* Ko d
KCNN query (k=2) by
Updating Vicinity circle 4 tos BT -

Ay =K/ (AN) - L eveteofs,

£

Trajectory NN query (TNN)

d g
ql = [s,u] £ _f}
« E‘l

q2 = [u,v]
q3 = [ve] b |
1 l,\. E, I;.,

Each segment has a SL E
Treated one by one !

EXPERIMENTS

Datasets:

Uniform

Real street segments: CA (130K points), ST (2M points).
Queries (each a segment):

Location and orientation randomly generated

Length is set as a parameter
Performance is measured as the average of running
200 queries.
Machine:

1Ghz CPU, 256M memory

Page size=4K (R-tree node capacity=200)
Compare CNN and TP (the only existing solution)

Exp 1: CoOST MODEL EVALUATION

. Doph-Fist B Bewt-fuwt —t— Estunation for optaal abporithan

o

qtery lengthi=12,5%) {ipoery bemptly=12 5%}

Uniform CA

EXp 2: PERFORMANCE VS QUERY LENGTH
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EXP 3: PERFORMANCE VS K

Wil vids




EXPERIMENTS — KEY NOTES

In general, CNN outperform TP significantly
Single traversal
For cost model:
BF better than DF (consistent with previous work)
The cost model is accurate
Performance & query Length
Length increase, split points increase
CPU for TP: keep repeat retrieving the same objects
Performance & k

For CNN: k has not much influenced on NA, but k influences
CPU: higher number of split points
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DiscussioON AND CONCLUSION

A fast algorithm for C-ANN guery.
Future work:

Rectangle data

Moving data points

Application to road networks (i.e., travel instead of
Euclidean distance)

Thank you!




