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Background

Q Triangular Irregular Network (TIN) Model
Q Triangular Mesh

0 Digital Elevation Model (DEM)

e s e s ey
1 Delaunay
,(l Triangulation *

7 By

* Computational Geometry: Algorithms and Applications (BERG, M., KREVELD, M., OVRMARS, My,
SCHWARZKOPF, 0.)

Background .

Q0 Distance Metrics

O Euclidean Distance De (p,q)

O Network Distance Du (p,q)

0 Surface Distance Ds(p,q)

Q De (p,q) < Ds (p,q) < Dn (p,q)
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O Intuition — Surface Voronoi Diagram

Voronoi Diagram
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0 Tight Surface Index

TC(pi)={q: g €T and DN
(pi, q) < DE(pj, q) (Vpi
P, pi # pi)}

For any query point
q€eTC(pi), the nearest
neighbor of g in surface
distance is pi.

Ds (pi, q) < DN (pi, q)
< De(pj, ) < Ds (pj, q)

(Vpj P, pj # pi)}
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0 Loose Surface Index

LC(pi)={q: q €T and DE
(pi, q) < DN(pj, q) (Vpi
€P, pj # pi)}

Site pi is guaranteed not
to be the nearest
neighbor of g if g is
outside LC(pi).

3pj eP (pj # pi) such that
Ds(pi, )= De(pi, q) >
Dn(pj, q) = Ds(pj, q)
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0 Storage Scheme
O R-Tree?

QO Unlike the Voronoi
diagram, tight/loose
cell are concave
polygons in most
cases and much
more irregular

QO All cells are adjacent
to each other,
causing too much
overlapping in R-
Tree

O Index both on TC/LC

O Solution: SIR-tree

O An R-tree that is generated on site set P

O Leaf node stores: sites inside the corresponding MBR,
the pointer to the vertices list of the tight/loose cell
and its neighbor list

~For the purpose of clarity, textures on terrain are removed. =
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0 SIR-Tree
0 An R-tree that is generated on site set P

0 Leaf node stores: sites inside the corresponding MBR,
the pointer to the vertices list of the tight/loose cell
and its neighbor list
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0 SIR-Tree Insertion
0 Algorithm
1. locate p in I, find out the loose cell
LC(r) containing p;
p.neighbor € LC(r)'s neighbor;
compute TC(p) and LC (p);
for each site p; in p.neighbor
update LC(p))'s edges according
to TC(p);
6 update TC(p))'s edges according
to LC(p);
7 insertpintol;
8 returnl;

aos wN

(b} TSI after p, Insertion

Indexing Land Surface e
0 More about TSI and LSI
0 Definitions:

Q TSI, LSI and Neighbor
QO Please refer to Section 4.1, 4.2 in the paper.

Q Observation:

QO Given that TSI and LSI are generated for the same site set
P, the tight and loose cells have common edges; more
lspeCIfICa”|y, all the tight cell’s edges are also the edges of
oose cells.

Q Please refer to Section 4.2 Property 3 in the paper.

Q TSI and LSI Construction
QO Naive Index Construction
0 Fast Index Construction
QO Please refer to Section 4.3 in the paper.

29

Outline [ vios'0s |

Q0 Motivation

0 Related Work

0 Background

O Indexing Land Surface

# Query Processing

Q Performance Evaluation

0 Conclusion and Future Work




Query Processing

0 Nearest Neighbor Query

Q If the query point o
falls into one tight
cell, its nearest
neighbor could be
identified immediately
without any surface
distance computation.

0 Our experiment shows
about 75% queries fall
into one of these tight |
cells.
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0 Nearest Neighbor Query

0 If the query point ol
falls out of all tight
cells, we need to
unfold all loose cells
that contain the query
point to compute its
surface distance to
the candidates.

(]

Search (i.e., number
of candidates we need | .
compute distance to)
is localized in loose
cells.
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0 Nearest Neighbor Query

Q If piis the nearest ol
neighbor of g, then
the shortest surface
path from g to pi is
inside the loose cell
LC(pi). *

Q Computation (i.e.,
unfolding: invocation
of CH algorithm) is
localized in loose cells. |

* Please refer to Section 4.2 Property 4 of the paper for proof.

Query Processing

O Nearest Neighbor Query
0 Algorithm : Depth First Search

Current Node  Stack: Nodelist

Root i | | | f |

Query Processing

O Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node  Stack: Nodelist
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Query Processing

O Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node  Stack: Nodelist

N3 N1 [ N3 | I I ‘
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O Nearest Neighbor Query
QO Algorithm : Depth First Search
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0 Nearest Neighbor Query
O Algorithm : Depth First Search

Ny
Ny
g T [iewari
NLPT=P1, P PT. PR |
Current Node  Stack: Nodelist
Na N1 N4 |
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O Nearest Neighbor Query
0 Algorithm : Depth First Search

~<== NO

Does TC(P3) or LC(P3) contain q?

Current Node  Stack: Nodelist

Current Node  Stack: Nodelist
Na N1 Na |
Query Processing

O Nearest Neighbor Query
0 Algorithm : Depth First Search

Does TC(P2) or LC(P2) contain q?

Current Node  Stack: Nodelist

Ne N INe
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O Nearest Neighbor Query
O Algorithm : Depth First Search
Ny
Ny
< VES,
- TC(P1)
P Retur
— plas

Does TC(P1) or LC(P1) containq? NN

Current Node  Stack: Nodelist

Na N1 Nz |
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Na INL | Na f f ‘
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O Nearest Neighbor Query
O Algorithm : Depth First Search l
Ny

Current Node  Stack: Nodelist

Root I | | | | ‘
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O Nearest Neighbor Query
QO Algorithm : Depth First Search

Current Node  Stack: Nodelist

N1 N1
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0 Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node  Stack: Nodelist
N3 I No N3 | | | ‘
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O Nearest Neighbor Query
0 Algorithm : Depth First Search

Current Node  Stack: Nodelist

N4 N1 | Na |
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O Nearest Neighbor Query
0 Algorithm : Depth First Search

Current Node  Stack: Nodelist
Ne INeINe [T ]
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O Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node — SaRIdRIBRASE

Ne (R fne | [ [ | [ |

€= YES,

LC(P3)
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O Nearest Neighbor Query
O Algorithm : Depth First Search

Candidate Set C

92,
R |

YES,

= Cpe)

Does the LC of any P3's neighbor contain
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O Nearest Neighbor Query
Q Algorithm : Depth First Search

-

Candidate Set C
P3| Ps ‘

Unfold the area covered by LC(p3) and
LC(p6) and compute their surface distance
to g by CH algorithm and return the p3 as
NN.
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0 k Nearest Neighbor Query
Q Property 4

The next nearest site is the generator of one of the neighbors of the
NNs found so far.

Therefore, The shortest
surface path from g to the
k-th NN pk will lie in the
area of

LC(G) U LC(px) = LC(p1) U
LC(p2) U ... ULC(pk).

Query Processing

0 k Nearest Neighbor Query
0 Algorithm

kNN Query (SIR-tree |, point q, surface T)
1 p € Nearest Neighbor Query(l, q, T);
2 add p to kNN set G;

3 initialize minimum heap H;

4 while(G.size <k)

5 for each neighbor site p; of G;

6 unfold LC(G) U LC(p;) to compute
surface distance;

7 addptoH;

8 end for

9 pé€deheap H;

10 add pto G;

11 end while;

12 return G;

Query Processing iehe

0 More about Query Processing
0 Surface Index R-Tree (SIR-tree)
O How an R-tree is built on TSI and LSI?
0O SIR-tree insertion
O Please refer to Section 4.4 in the paper.

O NN Query Algorithm
O Please refer to Section 5.1 Algorithm 3 in the paper.

0 kNN Query Processing
O Property of next nearest neighbor
0 Incremental algorithm for kNN Query
O Please refer to Section 5.2 in the paper.
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Performance Evaluation gy

0 Dataset =
O Eagle Peak (EP) at Wyoming State, USA
0 10.7kmX14km, 1.4M sampled points.
0 Bearhead (BH) at Washington State, USA
QO Similar size as above, 1.3M sampled points.
QO Uniformly distributed Point of Interest

Eagle Peak (EP)

Bearhead (BH)

~http:fidata.geocomm.com/ 54




Performance Evaluation
0 Competing Approaches

0 Surface Index (SI)
O Exact and quick answer

0 Range Ranking (RR)
0O Approximate and quick answer

O Chen Han Algorithm (CH)
0 Exact and slow answer

Performance Evaluation

4 Accuracy vs. Value of k

0 The accuracy of RR drops dramatically when the value of k
increases.

0 The accuracy of SI stays at 100%.

4 5] 8- KR
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0 Query Efficiency, 1/0 cost vs. Value of k

Q The difference in improvement of SI over CH increases for
larger k.

[ 51 = RR —~ CH|

1200 1. 2E+05

Response Time (Sec) Accessed TIN Triangles

1. 0E+05
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(a) Query Efficiency, d=2, EP (€) O Cost, d=2, EP

Outline

0 Motivation

O Related Work

0 Background

0O Indexing Land Surface

O Query Processing

O Performance Evaluation

¥ Conclusion and Future Work
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0 Conclusion

0O We extend the traditional kNN Query to the space
constrained with the third dimension.

0 We construct two complementary indexing schemes,
namely Tight Surface Index (TSI) and Loose Surface Index
(LSTI) to reduce the invocation of the costly surface distance
computation.

0 SI significantly outperforms its competitors in accuracy and
efficiency.

0 Future Work
Q Further evaluate its performance with synthetic datasets.

O Study variations of skNNN such as the continuous skNN
query, dynamic skNN guery and visible skNN query.
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