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Yosemite National Park
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Which is the 
NEAREST

campsite???

Motivation

Problem
To find k Nearest Neighbor
based on the Surface Distance.

Challenges
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Which is the 
NEAREST

campsite???

g
Huge size of surface model

Millions of terrain data for a region of 10km×10km 
Costly surface distance computation

Tens of minutes on a modern PC for a terrain of 10,000
No efficient surface index structure

R-tree, Voronoi Diagram cannot apply directly.

Motivation
Applications

Tourist Applications
Scientific Adventures
Military Operations
Geo-realistic Games
Space Explorations
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Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN
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Background
Triangular Irregular Network (TIN) Model

Triangular Mesh
Digital Elevation Model (DEM)

Delaunay 
Triangulation *

17
* Computational Geometry: Algorithms and Applications (BERG, M., KREVELD, M., OVRMARS, M.,  
SCHWARZKOPF, O.)

Background

p

Distance Metrics
Euclidean Distance DE (p,q)
Network Distance DN (p,q)
Surface Distance DS (p,q)
DE (p,q) ≤ DS (p,q) ≤ DN (p,q)

18

q

Euclidean 
Distance

Network 
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Shortest Surface Path Computation
Chen-Han (CH) Algorithm * : unfold all the faces of a 
polyhedron to one plane
Time Complexity:          , n is the total number of the vertices 
on the surface

19* Shortest paths on a polyhedron: CHEN, J., HAN, Y., Computational Geometry 1990
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Indexing Land Surface
Intuition – Surface Voronoi Diagram
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Voronoi Diagram

q

Too Complex to Build

Indexing Land Surface

TC(pi)={q: q T and DN
(pi , q) < DE(pj, q) (∀pj
∈P, pj ≠ pi)}

For any query point 

Tight Surface Index

p3

Tight Cell

24

For any query point 
q TC(pi), the nearest 
neighbor of q in surface 
distance is pi.

DS (pi , q) ≤ DN (pi , q) 
< DE(pj, q) ≤ DS (pj , q)

(∀pj ∈P, pj ≠ pi)}

p1

p5

p2

p7
p6

p4

q
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p3

Indexing Land Surface
Loose Surface Index

LC(pi)={q: q T and DE
(pi , q) < DN(pj, q) (∀pj
∈P, pj ≠ pi)}

Site pi is guaranteed not 

Loose Cell

25

p1

p5

p2

p7
p6

p4
Site pi is guaranteed not 
to be the nearest 
neighbor of q if q is 
outside LC(pi).

∃pj ∈P (pj ≠ pi) such that 
DS(pi, q)≥ DE(pi, q) > 
DN(pj, q) ≥ DS(pj, q)

q

Indexing Land Surface
Storage Scheme

R-Tree?
Unlike the Voronoi 
diagram, tight/loose 
cell are concave 
polygons in most 
cases and much 
more irregular
All cells are adjacent
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All cells are adjacent 
to each other, 
causing too much 
overlapping in R-
Tree
Index both on TC/LC

Solution: SIR-tree

* For the purpose of clarity, textures on terrain are removed. 

An R-tree that is generated on site set P
Leaf node stores: sites inside the corresponding MBR, 
the pointer to the vertices list of the tight/loose cell 
and its neighbor list 

Indexing Land Surface
SIR-Tree

An R-tree that is generated on site set P
Leaf node stores: sites inside the corresponding MBR, 
the pointer to the vertices list of the tight/loose cell 
and its neighbor list
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Indexing Land Surface
SIR-Tree Insertion

Algorithm

1. locate p in I, find out the loose cell
LC(r) containing p;

2 p.neighbor LC(r)’s neighbor;
3 compute TC(p) and LC (p);
4 for each site pi in p.neighbor

28

4 for each site pi in p.neighbor
5 update LC(pj)’s edges according

to TC(p);
6 update TC(pj)’s edges according

to LC(p);
7 insert p into I;
8 return I;

Indexing Land Surface
More about TSI and LSI

Definitions:
TSI, LSI and Neighbor
Please refer to Section 4.1, 4.2 in the paper.

Observation:
Given that TSI and LSI are generated for the same site set 

P  the tight and loose cells have common edges; more 

29

P, the tight and loose cells have common edges; more 
specifically, all the tight cell’s edges are also the edges of 
loose cells.
Please refer to Section 4.2 Property 3 in the paper.

TSI and LSI Construction
Naïve Index Construction
Fast Index Construction
Please refer to Section 4.3 in the paper.

Outline

Motivation
Related Work
Background

30

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work



10/23/2009

6

Query Processing
Nearest Neighbor Query

If the query point 
falls into one tight
cell, its nearest
neighbor could be 
identified immediately 
without any surface

p3

31

without any surface
distance computation.

Our experiment shows
about 75% queries fall
into one of these tight
cells.

p1

p5

p2

p7
p6

p4

q

Query Processing
Nearest Neighbor Query

If the query point 
falls out of all tight
cells, we need to
unfold all loose cells
that contain the query
point to compute its 

p3

32

point to compute its 
surface distance to 
the candidates.

Search (i.e., number
of candidates we need
compute distance to)
is localized in loose 
cells.

p1

p5

p2

p7
p6

p4

q

Query Processing
Nearest Neighbor Query

If pi is the nearest 
neighbor of q, then 
the shortest surface 
path from q to pi is 
inside the loose cell 
LC(pi). *

p3

33

LC(pi). 

Computation (i.e.,
unfolding: invocation
of CH algorithm) is
localized in loose cells.

of the paper for proof.4Property 2 .4Section Please refer to * 

p1

p5

p2

p7
p6

p4

q

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

34

p9

query

Root

Current Node Stack: Nodelist

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search
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p9

query

N1

Current Node Stack: Nodelist

N1

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search
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p9

query

N3

Current Node Stack: Nodelist

N1 N3
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p9

query

N4

Current Node Stack: Nodelist

N1 N4
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p9

query

N4

Current Node Stack: Nodelist

N1 N4

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search
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p9

query

N4

Current Node Stack: Nodelist

N1 N4

Does TC(P3) or LC(P3) contain q?

NO

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search
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p9

query

N4

Current Node Stack: Nodelist

N1 N4

Does TC(P2) or LC(P2) contain q?

NO

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

41

p9

query

N4

Current Node Stack: Nodelist

N1 N4

Does TC(P1) or LC(P1) contain q?

YES,

TC(P1)

Return 
p1 as 
NN

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

42

Root

Current Node Stack: Nodelist

p9

query
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Query Processing
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Algorithm : Depth First Search
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Current Node Stack: Nodelist

p9

query

N1 N1

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

44

Current Node Stack: Nodelist

p9

query

N3 N1 N3

Query Processing
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Algorithm : Depth First Search
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Current Node Stack: Nodelist

p9

query

N4 N1 N4
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Current Node Stack: Nodelist

p9

query

N4 N1 N4

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search
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p9

query

Current Node Stack: Nodelist

N4 N1 N4

Does TC(P3) or LC(P3) contain q?

YES, 
LC(P3)

Candidate Set C

P3

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

48

p9

query

Does the LC of any P3’s neighbor contain 
q?, Candidate Set C

P3

YES, 
LC(P6)

P6
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Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

49

p9

query

Candidate Set C

P3 P6

) and 3the area covered by LC(pUnfold
LC(p6) and compute their surface distance 

as 3 and return the pCH algorithmto q by 
NN .

Query Processing
k Nearest Neighbor Query

Property 4
The next nearest site is the generator of one of the neighbors of the 
NNs found so far.

Therefore, The shortest 
f th f t th

50

surface path from q to the 
k-th NN pk will lie in the 
area of 
LC(G) U LC(pk) = LC(p1) U
LC(p2) U … U LC(pk).

Query Processing
k Nearest Neighbor Query

Algorithm

kNN Query (SIR-tree I, point q, surface T)
1 p Nearest Neighbor Query(I, q, T);
2 add p to kNN set G;
3 initialize minimum heap H;
4 while(G.size < k)
5 for each neighbor site p of G;
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5 for each neighbor site pi of G;
6      unfold LC(G) U LC(pi) to compute 
surface         distance;
7 add pi to H;
8 end for
9 p deheap H;
10   add p to G; 
11  end while;
12  return G;

Query Processing
More about Query Processing

Surface Index R-Tree (SIR-tree)
How an R-tree is built on TSI and LSI?
SIR-tree insertion
Please refer to Section 4.4 in the paper.

NN Query Algorithm
Please refer to Section 5 1 Algorithm 3 in the paper
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Please refer to Section 5.1 Algorithm 3 in the paper.

kNN Query Processing
Property of next nearest neighbor
Incremental algorithm for kNN Query
Please refer to Section 5.2 in the paper.
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Performance Evaluation
Dataset *

Eagle Peak (EP) at Wyoming State, USA
10.7km×14km, 1.4M sampled points.

Bearhead (BH) at Washington State, USA
Similar size as above, 1.3M sampled points.

Uniformly distributed Point of Interest

54http://data.geocomm.com/* 

Bearhead (BH)Eagle Peak (EP)
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Performance Evaluation
Competing Approaches

Surface Index (SI)
Exact and quick answer

Range Ranking (RR)
Approximate and quick answer
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Chen Han Algorithm (CH)
Exact and slow answer

Performance Evaluation
Query Efficiency, I/O cost vs. Value of k

The difference in improvement of SI over CH increases for 
larger k. 
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Performance Evaluation
Accuracy vs. Value of k

The accuracy of RR drops dramatically when the value of k 
increases.
The accuracy of SI stays at 100%.
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Conclusion and Future Work
Conclusion

We extend the traditional kNN Query to the space 
constrained with the third dimension.
We construct two complementary indexing schemes, 
namely Tight Surface Index (TSI) and Loose Surface Index 
(LSI) to reduce the invocation of the costly surface distance 
computation.
SI significantly outperforms its competitors in accuracy and 
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g y p p y
efficiency.

Future Work
Further evaluate its performance with synthetic datasets.
Study variations of skNN such as the continuous skNN 
query, dynamic skNN query and visible skNN query.

Email: Songhua Xing
sxing@usc.edu

Thanks!
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