Indexing Land Surface for
Efficient KNN Query

Cyrus Shahabi, Lu-An Tang and Songhua Xing
InfoLab
University of Southern California
Los Angeles, CA 90089-0781
http://infolab.usc.edu

Ced ==
(i

Motivation

5

Yosemite Na'{ili‘ alPark

10/23/2009

Outline

@ Motivation

0 Related Work

O Background

O Indexing Land Surface

0 Query Processing

O Performance Evaluation

O Conclusion and Future Work

Motivation

Motivation

st Neighbor
rface Distance.

Outline [vios'os |

O Motivation

o Related Work

O Background

O Indexing Land Surface

0 Query Processing

O Performance Evaluation

O Conclusion and Future Work

10/23/2009

Related Work iEenl

al Database

= Conventional kNN
= Reverse kNN

= Time-aware kNN

= Visible KNN

Euclidean Space Road Networks Surface

Related Work iehe

atial Database
kNN Query Processmg

Euclidean Space|f| Road Networks Surface

< Conventional KNN | ¥ NN Query: Roussopoulos et al., SIMGOD 1995
= Reverse kNN

= Time-aware kNN

= Visible KNN

Related Work iehe

Spatial Database
kNN Query Processmg

= Conventional kNN
= Reverse KNN

= Time-aware kNN

= Visible KNN

Euclidean Space||S Road Networks Surface

¥ NN Query: Roussopoulos et al., SIMGOD 1995
v“Influences Set: Korn et al., SIMGOD 2000
¥ FINCH Algorithm: Wu et al,. VLDB 2008

Related Work [vios'0s |

Euclidean Space] Road Networks Surface

= Conventional kNN v“NN Query: Roussopoulos et al., SIMGOD 1995
Y Influences Set: Korn et al., SIMGOD 2000
* Beverse kN v FINCH Algorithm: Wu et al,. VLDB 2008
= Time-aware kNN v Time-parameterized queries : Tao et al., SIMGOD 2002

v Continuous NN Search: Tao et al,. VLDB 2002

= Visible kNN

Related Work ienes|

Spatial Database
kNN Query Processmg

= Conventional kNN
= Reverse kNN

= Time-aware kNN

& Visible kNN

[Euclidean Spacej Road Networks Surface

v“NN Query: Roussopoulos et al., SIMGOD 1995

Y Influences Set: Korn et al., SIMGOD 2000

v FINCH Algorithm: Wu et al,. VLDB 2008

v Time-parameterized queries : Tao et al., SIMGOD 2002
¥ Continuous NN Search: Tao et al.. VLDB 2002

v VKNN Query: Nutanong et al., DASFAA 2007

Related Work KT

atial Database
kNN Query Processing

Euclidean Space |[[[S|Road Networks Surface

= Conventional KNN | v Query Processing in SNDB = Papadias et al., VLDB 2003
V-based kNN in SNDB: Shahabi et al., VLDB 2004
= Rewve kNN
Reverse kN v RNN in Large Graphs: Yiu et al., TKDE 2006

= Time-aware kNN ¥ CNN Monitoring in RN: Mouratidis et al., VLDB 2006

= Visible KNN

10/23/2009

Related Work KT

atial Database
kNN Query Processing

Euclidean Space Road Networks Surface

= Conventional KNN v SKNN Query : Deng et al., ICDE 2006, VLDB J. 2008

= Reverse kNN

= Time-aware kNN

= Visible KNN

Related Work

atial Database
kNN Query Processing

Euclidean Space Road Networks Surface

= Conventional KNN ¥ SKNN Query : Deng et al., ICDE 2006, VLDB J. 2008
Q0 Not an incremental approach

= Reverse kNN
0 Not an exact approach

= Time-aware kNN

= Visible KNN

Outline

0 Motivation

O Related Work

¥ Background

0O Indexing Land Surface

O Query Processing

O Performance Evaluation

O Conclusion and Future Work

Background

Q Triangular Irregular Network (TIN) Model
Q Triangular Mesh

0 Digital Elevation Model (DEM)

e s e s ey
1 Delaunay
,(l Triangulation *

7 By

* Computational Geometry: Algorithms and Applications (BERG, M., KREVELD, M., OVRMARS, My,
SCHWARZKOPF, 0.)

Background .

Q0 Distance Metrics

O Euclidean Distance De (p,q)

O Network Distance Du (p,q)

0 Surface Distance Ds(p,q)

Q De (p,q) < Ds (p,q) < Dn (p,q)

10/23/2009

Background iEenl

U Shortest Surface Path Computation
@ Chen-Han (CH) Algorithm * : unfold all the faces of a
polyhedron to one plane
O Time Complexity: O(n?) , n is the total number of the vertices
on the surface

* Shortest paths on a polyhedron: CHEN, J., HAN, Y., Computational Geometry 1990 19

Background iEenl

0 Shortest Surface Path Computation
O Chen-Han (CH) Algorithm * : unfold all the faces of a
polyhedron to one plane
0 Time Complexity: O(n?) , n is the total number of the vertices
on the surface

* Shortest paths on a polyhedron: CHEN, J., HAN, Y., Computational Geometry 1990 20

Background (Vicenen!

U Shortest Surface Path Computation
O Chen-Han (CH) Algorithm * : unfold all the faces of a
polyhedron to one plane
0 Time Complexity: O(n?), n is the total number of the vertices
on the surface

§

A i =y,

Cased

* Shortest paths on a polyhedron: CHEN, J., HAN, Y., Computational Geometry 1990 21

Outline | vios'os |

0 Motivation

O Related Work

0 Background

¥ Indexing Land Surface

O Query Processing

O Performance Evaluation

O Conclusion and Future Work

Indexing Land Surface e

O Intuition — Surface Voronoi Diagram

Voronoi Diagram

23

Indexing Land Surface e

0 Tight Surface Index

TC(pi)={q: g €T and DN
(pi, q) < DE(pj, q) (Vpi
P, pi # pi)}

For any query point
q€eTC(pi), the nearest
neighbor of g in surface
distance is pi.

Ds (pi, q) < DN (pi, q)
< De(pj,) < Ds (pj, q)

(Vpj P, pj # pi)}

24

Indexing Land Surface e

0 Loose Surface Index

LC(pi)={q: q €T and DE
(pi, q) < DN(pj, q) (Vpi
€P, pj # pi)}

Site pi is guaranteed not
to be the nearest
neighbor of g if g is
outside LC(pi).

3pj eP (pj # pi) such that
Ds(pi,)= De(pi, q) >
Dn(pj, q) = Ds(pj, q)

25

10/23/2009

Indexing Land Surface e

0 Storage Scheme
O R-Tree?

QO Unlike the Voronoi
diagram, tight/loose
cell are concave
polygons in most
cases and much
more irregular

QO All cells are adjacent
to each other,
causing too much
overlapping in R-
Tree

O Index both on TC/LC

O Solution: SIR-tree

O An R-tree that is generated on site set P

O Leaf node stores: sites inside the corresponding MBR,
the pointer to the vertices list of the tight/loose cell
and its neighbor list

~For the purpose of clarity, textures on terrain are removed. =

Indexing Land Surface e

0 SIR-Tree
0 An R-tree that is generated on site set P

0 Leaf node stores: sites inside the corresponding MBR,
the pointer to the vertices list of the tight/loose cell
and its neighbor list

Indexing Land Surface e

0 SIR-Tree Insertion
0 Algorithm
1. locate p in I, find out the loose cell
LC(r) containing p;
p.neighbor € LC(r)'s neighbor;
compute TC(p) and LC (p);
for each site p; in p.neighbor
update LC(p))'s edges according
to TC(p);
6 update TC(p))'s edges according
to LC(p);
7 insertpintol;
8 returnl;

aos wN

(b} TSI after p, Insertion

Indexing Land Surface e
0 More about TSI and LSI
0 Definitions:

Q TSI, LSI and Neighbor
QO Please refer to Section 4.1, 4.2 in the paper.

Q Observation:

QO Given that TSI and LSI are generated for the same site set
P, the tight and loose cells have common edges; more
lspeCIfICa”|y, all the tight cell’s edges are also the edges of
oose cells.

Q Please refer to Section 4.2 Property 3 in the paper.

Q TSI and LSI Construction
QO Naive Index Construction
0 Fast Index Construction
QO Please refer to Section 4.3 in the paper.

29

Outline [vios'0s |

Q0 Motivation

0 Related Work

0 Background

O Indexing Land Surface

Query Processing

Q Performance Evaluation

0 Conclusion and Future Work

Query Processing

0 Nearest Neighbor Query

Q If the query point o
falls into one tight
cell, its nearest
neighbor could be
identified immediately
without any surface
distance computation.

0 Our experiment shows
about 75% queries fall
into one of these tight |
cells.

10/23/2009

Query Processing e
0 Nearest Neighbor Query

0 If the query point ol
falls out of all tight
cells, we need to
unfold all loose cells
that contain the query
point to compute its
surface distance to
the candidates.

(]

Search (i.e., number
of candidates we need | .
compute distance to)
is localized in loose
cells.

32

Query Processing

0 Nearest Neighbor Query

Q If piis the nearest ol
neighbor of g, then
the shortest surface
path from g to pi is
inside the loose cell
LC(pi). *

Q Computation (i.e.,
unfolding: invocation
of CH algorithm) is
localized in loose cells. |

* Please refer to Section 4.2 Property 4 of the paper for proof.

Query Processing

O Nearest Neighbor Query
0 Algorithm : Depth First Search

Current Node Stack: Nodelist

Root i | | | f |

Query Processing

O Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node Stack: Nodelist

N T R R —

Query Processing

O Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node Stack: Nodelist

N3 N1 [N3 | I I ‘

36

Query Processing e

O Nearest Neighbor Query
QO Algorithm : Depth First Search

10/23/2009

Query Processing e

0 Nearest Neighbor Query
O Algorithm : Depth First Search

Ny
Ny
g T [iewari
NLPT=P1, P PT. PR |
Current Node Stack: Nodelist
Na N1 N4 |
37
Query Processing

O Nearest Neighbor Query
0 Algorithm : Depth First Search

~<== NO

Does TC(P3) or LC(P3) contain q?

Current Node Stack: Nodelist

Current Node Stack: Nodelist
Na N1 Na |
Query Processing

O Nearest Neighbor Query
0 Algorithm : Depth First Search

Does TC(P2) or LC(P2) contain q?

Current Node Stack: Nodelist

Ne N INe
39
Query Processing
O Nearest Neighbor Query
O Algorithm : Depth First Search
Ny
Ny
< VES,
- TC(P1)
P Retur
— plas

Does TC(P1) or LC(P1) containq? NN

Current Node Stack: Nodelist

Na N1 Nz |

41

Na INL | Na f f ‘
40
Query Processing
O Nearest Neighbor Query
O Algorithm : Depth First Search l
Ny

Current Node Stack: Nodelist

Root I | | | | ‘

42

Query Processing

O Nearest Neighbor Query
QO Algorithm : Depth First Search

Current Node Stack: Nodelist

N1 N1

43

10/23/2009

Query Processing

0 Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node Stack: Nodelist
N3 I No N3 | | | ‘

44

Query Processing

O Nearest Neighbor Query
0 Algorithm : Depth First Search

Current Node Stack: Nodelist

N4 N1 | Na |

45

Query Processing

O Nearest Neighbor Query
0 Algorithm : Depth First Search

Current Node Stack: Nodelist
Ne INeINe [T]

a6

Query Processing

O Nearest Neighbor Query
O Algorithm : Depth First Search

Current Node — SaRIdRIBRASE

Ne (R fne | [[| [|

€= YES,

LC(P3)

47

Query Processing

O Nearest Neighbor Query
O Algorithm : Depth First Search

Candidate Set C

92,
R |

YES,

= Cpe)

Does the LC of any P3's neighbor contain

48

Query Processing

[vios'os |

O Nearest Neighbor Query
Q Algorithm : Depth First Search

-

Candidate Set C
P3| Ps ‘

Unfold the area covered by LC(p3) and
LC(p6) and compute their surface distance
to g by CH algorithm and return the p3 as
NN.

49

10/23/2009

Query Processing [vios'os |

0 k Nearest Neighbor Query
Q Property 4

The next nearest site is the generator of one of the neighbors of the
NNs found so far.

Therefore, The shortest
surface path from g to the
k-th NN pk will lie in the
area of

LC(G) U LC(px) = LC(p1) U
LC(p2) U ... ULC(pk).

Query Processing

0 k Nearest Neighbor Query
0 Algorithm

kNN Query (SIR-tree |, point q, surface T)
1 p € Nearest Neighbor Query(l, q, T);
2 add p to kNN set G;

3 initialize minimum heap H;

4 while(G.size <k)

5 for each neighbor site p; of G;

6 unfold LC(G) U LC(p;) to compute
surface distance;

7 addptoH;

8 end for

9 pé€deheap H;

10 add pto G;

11 end while;

12 return G;

Query Processing iehe

0 More about Query Processing
0 Surface Index R-Tree (SIR-tree)
O How an R-tree is built on TSI and LSI?
0O SIR-tree insertion
O Please refer to Section 4.4 in the paper.

O NN Query Algorithm
O Please refer to Section 5.1 Algorithm 3 in the paper.

0 kNN Query Processing
O Property of next nearest neighbor
0 Incremental algorithm for kNN Query
O Please refer to Section 5.2 in the paper.

Outline

[vios o |

O Motivation

O Related Work

0 Background

O Indexing Land Surface

O Query Processing

¥ Performance Evaluation

0 Conclusion and Future Work

Performance Evaluation gy

0 Dataset =
O Eagle Peak (EP) at Wyoming State, USA
0 10.7kmX14km, 1.4M sampled points.
0 Bearhead (BH) at Washington State, USA
QO Similar size as above, 1.3M sampled points.
QO Uniformly distributed Point of Interest

Eagle Peak (EP)

Bearhead (BH)

~http:fidata.geocomm.com/ 54

Performance Evaluation
0 Competing Approaches

0 Surface Index (SI)
O Exact and quick answer

0 Range Ranking (RR)
0O Approximate and quick answer

O Chen Han Algorithm (CH)
0 Exact and slow answer

Performance Evaluation

4 Accuracy vs. Value of k

0 The accuracy of RR drops dramatically when the value of k
increases.

0 The accuracy of SI stays at 100%.

4 5] 8- KR

Accuracy Ratio Accuracy Ratio
1005 100%
90% ’\"\ 0%
80% 80%

0% A\ 0%

0% \- 0%

50% = 50% N

106 10%

30% 30% \.A
208 200% =

10% 10%
[0%
1.2 3 4.5 6 .7 8 9 10 [R |

() Query Accuracy on EP

567 8 9 10

(b) Query Accuracy on BH

10/23/2009

Performance Evaluation

0 Query Efficiency, 1/0 cost vs. Value of k

Q The difference in improvement of SI over CH increases for
larger k.

[51 = RR —~ CH|

1200 1. 2E+05

Response Time (Sec) Accessed TIN Triangles

1. 0E+05
8. 0E+04
6.0E+04

4. 0E+04

2. 0B+04
0 L e——"

- k
2 4 6 8 10 12 14 16 18 20 Lom00

; 2 4 6 8 10 12 14 16 18 20
(a) Query Efficiency, d=2, EP (€) O Cost, d=2, EP

Outline

0 Motivation

O Related Work

0 Background

0O Indexing Land Surface

O Query Processing

O Performance Evaluation

¥ Conclusion and Future Work

Conclusion and Future Work

0 Conclusion

0O We extend the traditional kNN Query to the space
constrained with the third dimension.

0 We construct two complementary indexing schemes,
namely Tight Surface Index (TSI) and Loose Surface Index
(LSTI) to reduce the invocation of the costly surface distance
computation.

0 SI significantly outperforms its competitors in accuracy and
efficiency.

0 Future Work
Q Further evaluate its performance with synthetic datasets.

O Study variations of skNNN such as the continuous skNN
query, dynamic skNN guery and visible skNN query.

LhL

Thanks!

Email: Songhua Xing
sxing@usc.edu

60

