
10/23/2009

1

Cyrus Shahabi Lu An Tang and Songhua Xing

Indexing Land Surface for
Efficient kNN Query

Cyrus Shahabi, Lu-An Tang and Songhua Xing

InfoLab

University of Southern California

Los Angeles, CA 90089-0781

http://infolab.usc.edu

Outline

Motivation
Related Work
Background

2

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work

Motivation

3

Yosemite National Park

Motivation

4

Which is the
NEAREST

campsite???

Motivation

Problem
To find k Nearest Neighbor
based on the Surface Distance.

Challenges

5

Which is the
NEAREST

campsite???

g
Huge size of surface model

Millions of terrain data for a region of 10km×10km
Costly surface distance computation

Tens of minutes on a modern PC for a terrain of 10,000
No efficient surface index structure

R-tree, Voronoi Diagram cannot apply directly.

Motivation
Applications

Tourist Applications
Scientific Adventures
Military Operations
Geo-realistic Games
Space Explorations

6

10/23/2009

2

Outline

Motivation
Related Work
Background

7

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

8

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

9

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

NN Query: Roussopoulos et al., SIMGOD 1995

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

10

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

NN Query: Roussopoulos et al., SIMGOD 1995

Influences Set: Korn et al., SIMGOD 2000

FINCH Algorithm: Wu et al,. VLDB 2008

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

11

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

NN Query: Roussopoulos et al., SIMGOD 1995

Influences Set: Korn et al., SIMGOD 2000

FINCH Algorithm: Wu et al,. VLDB 2008

Time-parameterized queries : Tao et al., SIMGOD 2002

Continuous NN Search: Tao et al,. VLDB 2002

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

12

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

NN Query: Roussopoulos et al., SIMGOD 1995

Influences Set: Korn et al., SIMGOD 2000

FINCH Algorithm: Wu et al,. VLDB 2008

Time-parameterized queries : Tao et al., SIMGOD 2002

Continuous NN Search: Tao et al,. VLDB 2002

VkNN Query: Nutanong et al., DASFAA 2007

10/23/2009

3

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

13

Query Processing in SNDB : Papadias et al., VLDB 2003

V-based kNN in SNDB: Shahabi et al., VLDB 2004

RNN in Large Graphs: Yiu et al., TKDE 2006

CNN Monitoring in RN: Mouratidis et al., VLDB 2006

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

14

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

SkNN Query : Deng et al., ICDE 2006, VLDB J. 2008

Related Work

Euclidean Space Road Networks Surface

Spatial Database

kNN Query Processing

15

Conventional kNN

Reverse kNN

Time-aware kNN

Visible kNN

SkNN Query : Deng et al., ICDE 2006, VLDB J. 2008

Not an incremental approach

Not an exact approach

Outline

Motivation
Related Work
Background

16

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work

Background
Triangular Irregular Network (TIN) Model

Triangular Mesh
Digital Elevation Model (DEM)

Delaunay
Triangulation *

17
* Computational Geometry: Algorithms and Applications (BERG, M., KREVELD, M., OVRMARS, M.,
SCHWARZKOPF, O.)

Background

p

Distance Metrics
Euclidean Distance DE (p,q)
Network Distance DN (p,q)
Surface Distance DS (p,q)
DE (p,q) ≤ DS (p,q) ≤ DN (p,q)

18

q

Euclidean
Distance

Network
Distance

Surface
Distance

10/23/2009

4

Background

)(2nO

Shortest Surface Path Computation
Chen-Han (CH) Algorithm * : unfold all the faces of a
polyhedron to one plane
Time Complexity: , n is the total number of the vertices
on the surface

19* Shortest paths on a polyhedron: CHEN, J., HAN, Y., Computational Geometry 1990

Background

)(2nO

Shortest Surface Path Computation
Chen-Han (CH) Algorithm * : unfold all the faces of a
polyhedron to one plane
Time Complexity: , n is the total number of the vertices
on the surface

20* Shortest paths on a polyhedron: CHEN, J., HAN, Y., Computational Geometry 1990

Background

)(2nO

Shortest Surface Path Computation
Chen-Han (CH) Algorithm * : unfold all the faces of a
polyhedron to one plane
Time Complexity: , n is the total number of the vertices
on the surface

B
2

4 ng

Case 1

21* Shortest paths on a polyhedron: CHEN, J., HAN, Y., Computational Geometry 1990

A
1

3

4

A
B

1

2

3

4
C

A B
1 2

3 4

A B1 2

3

C

U
nf

ol
di

n

Case 2

Case 3

Case 4 ……

Outline

Motivation
Related Work
Background

22

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work

Indexing Land Surface
Intuition – Surface Voronoi Diagram

23

Voronoi Diagram

q

Too Complex to Build

Indexing Land Surface

TC(pi)={q: q T and DN
(pi , q) < DE(pj, q) (∀pj
∈P, pj ≠ pi)}

For any query point

Tight Surface Index

p3

Tight Cell

24

For any query point
q TC(pi), the nearest
neighbor of q in surface
distance is pi.

DS (pi , q) ≤ DN (pi , q)
< DE(pj, q) ≤ DS (pj , q)

(∀pj ∈P, pj ≠ pi)}

p1

p5

p2

p7
p6

p4

q

10/23/2009

5

p3

Indexing Land Surface
Loose Surface Index

LC(pi)={q: q T and DE
(pi , q) < DN(pj, q) (∀pj
∈P, pj ≠ pi)}

Site pi is guaranteed not

Loose Cell

25

p1

p5

p2

p7
p6

p4
Site pi is guaranteed not
to be the nearest
neighbor of q if q is
outside LC(pi).

∃pj ∈P (pj ≠ pi) such that
DS(pi, q)≥ DE(pi, q) >
DN(pj, q) ≥ DS(pj, q)

q

Indexing Land Surface
Storage Scheme

R-Tree?
Unlike the Voronoi
diagram, tight/loose
cell are concave
polygons in most
cases and much
more irregular
All cells are adjacent

26

All cells are adjacent
to each other,
causing too much
overlapping in R-
Tree
Index both on TC/LC

Solution: SIR-tree

* For the purpose of clarity, textures on terrain are removed.

An R-tree that is generated on site set P
Leaf node stores: sites inside the corresponding MBR,
the pointer to the vertices list of the tight/loose cell
and its neighbor list

Indexing Land Surface
SIR-Tree

An R-tree that is generated on site set P
Leaf node stores: sites inside the corresponding MBR,
the pointer to the vertices list of the tight/loose cell
and its neighbor list

27

Indexing Land Surface
SIR-Tree Insertion

Algorithm

1. locate p in I, find out the loose cell
LC(r) containing p;

2 p.neighbor LC(r)’s neighbor;
3 compute TC(p) and LC (p);
4 for each site pi in p.neighbor

28

4 for each site pi in p.neighbor
5 update LC(pj)’s edges according

to TC(p);
6 update TC(pj)’s edges according

to LC(p);
7 insert p into I;
8 return I;

Indexing Land Surface
More about TSI and LSI

Definitions:
TSI, LSI and Neighbor
Please refer to Section 4.1, 4.2 in the paper.

Observation:
Given that TSI and LSI are generated for the same site set

P the tight and loose cells have common edges; more

29

P, the tight and loose cells have common edges; more
specifically, all the tight cell’s edges are also the edges of
loose cells.
Please refer to Section 4.2 Property 3 in the paper.

TSI and LSI Construction
Naïve Index Construction
Fast Index Construction
Please refer to Section 4.3 in the paper.

Outline

Motivation
Related Work
Background

30

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work

10/23/2009

6

Query Processing
Nearest Neighbor Query

If the query point
falls into one tight
cell, its nearest
neighbor could be
identified immediately
without any surface

p3

31

without any surface
distance computation.

Our experiment shows
about 75% queries fall
into one of these tight
cells.

p1

p5

p2

p7
p6

p4

q

Query Processing
Nearest Neighbor Query

If the query point
falls out of all tight
cells, we need to
unfold all loose cells
that contain the query
point to compute its

p3

32

point to compute its
surface distance to
the candidates.

Search (i.e., number
of candidates we need
compute distance to)
is localized in loose
cells.

p1

p5

p2

p7
p6

p4

q

Query Processing
Nearest Neighbor Query

If pi is the nearest
neighbor of q, then
the shortest surface
path from q to pi is
inside the loose cell
LC(pi). *

p3

33

LC(pi).

Computation (i.e.,
unfolding: invocation
of CH algorithm) is
localized in loose cells.

of the paper for proof.4Property 2 .4Section Please refer to *

p1

p5

p2

p7
p6

p4

q

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

34

p9

query

Root

Current Node Stack: Nodelist

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

35

p9

query

N1

Current Node Stack: Nodelist

N1

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

36

p9

query

N3

Current Node Stack: Nodelist

N1 N3

10/23/2009

7

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

37

p9

query

N4

Current Node Stack: Nodelist

N1 N4

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

38

p9

query

N4

Current Node Stack: Nodelist

N1 N4

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

39

p9

query

N4

Current Node Stack: Nodelist

N1 N4

Does TC(P3) or LC(P3) contain q?

NO

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

40

p9

query

N4

Current Node Stack: Nodelist

N1 N4

Does TC(P2) or LC(P2) contain q?

NO

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

41

p9

query

N4

Current Node Stack: Nodelist

N1 N4

Does TC(P1) or LC(P1) contain q?

YES,

TC(P1)

Return
p1 as
NN

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

42

Root

Current Node Stack: Nodelist

p9

query

10/23/2009

8

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

43

Current Node Stack: Nodelist

p9

query

N1 N1

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

44

Current Node Stack: Nodelist

p9

query

N3 N1 N3

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

45

Current Node Stack: Nodelist

p9

query

N4 N1 N4

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

46

Current Node Stack: Nodelist

p9

query

N4 N1 N4

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

47

p9

query

Current Node Stack: Nodelist

N4 N1 N4

Does TC(P3) or LC(P3) contain q?

YES,
LC(P3)

Candidate Set C

P3

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

48

p9

query

Does the LC of any P3’s neighbor contain
q?, Candidate Set C

P3

YES,
LC(P6)

P6

10/23/2009

9

Query Processing
Nearest Neighbor Query

Algorithm : Depth First Search

49

p9

query

Candidate Set C

P3 P6

) and 3the area covered by LC(pUnfold
LC(p6) and compute their surface distance

as 3 and return the pCH algorithmto q by
NN .

Query Processing
k Nearest Neighbor Query

Property 4
The next nearest site is the generator of one of the neighbors of the
NNs found so far.

Therefore, The shortest
f th f t th

50

surface path from q to the
k-th NN pk will lie in the
area of
LC(G) U LC(pk) = LC(p1) U
LC(p2) U … U LC(pk).

Query Processing
k Nearest Neighbor Query

Algorithm

kNN Query (SIR-tree I, point q, surface T)
1 p Nearest Neighbor Query(I, q, T);
2 add p to kNN set G;
3 initialize minimum heap H;
4 while(G.size < k)
5 for each neighbor site p of G;

51

5 for each neighbor site pi of G;
6 unfold LC(G) U LC(pi) to compute
surface distance;
7 add pi to H;
8 end for
9 p deheap H;
10 add p to G;
11 end while;
12 return G;

Query Processing
More about Query Processing

Surface Index R-Tree (SIR-tree)
How an R-tree is built on TSI and LSI?
SIR-tree insertion
Please refer to Section 4.4 in the paper.

NN Query Algorithm
Please refer to Section 5 1 Algorithm 3 in the paper

52

Please refer to Section 5.1 Algorithm 3 in the paper.

kNN Query Processing
Property of next nearest neighbor
Incremental algorithm for kNN Query
Please refer to Section 5.2 in the paper.

Outline

Motivation
Related Work
Background

53

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work

Performance Evaluation
Dataset *

Eagle Peak (EP) at Wyoming State, USA
10.7km×14km, 1.4M sampled points.

Bearhead (BH) at Washington State, USA
Similar size as above, 1.3M sampled points.

Uniformly distributed Point of Interest

54http://data.geocomm.com/*

Bearhead (BH)Eagle Peak (EP)

10/23/2009

10

Performance Evaluation
Competing Approaches

Surface Index (SI)
Exact and quick answer

Range Ranking (RR)
Approximate and quick answer

55

Chen Han Algorithm (CH)
Exact and slow answer

Performance Evaluation
Query Efficiency, I/O cost vs. Value of k

The difference in improvement of SI over CH increases for
larger k.

56

Performance Evaluation
Accuracy vs. Value of k

The accuracy of RR drops dramatically when the value of k
increases.
The accuracy of SI stays at 100%.

57

Outline

Motivation
Related Work
Background

58

Indexing Land Surface
Query Processing
Performance Evaluation
Conclusion and Future Work

Conclusion and Future Work
Conclusion

We extend the traditional kNN Query to the space
constrained with the third dimension.
We construct two complementary indexing schemes,
namely Tight Surface Index (TSI) and Loose Surface Index
(LSI) to reduce the invocation of the costly surface distance
computation.
SI significantly outperforms its competitors in accuracy and

59

g y p p y
efficiency.

Future Work
Further evaluate its performance with synthetic datasets.
Study variations of skNN such as the continuous skNN
query, dynamic skNN query and visible skNN query.

Email: Songhua Xing
sxing@usc.edu

Thanks!

60

