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2. Statement of Project Goals

One of the goals of this project is to develop methods for compressing speech signals for a
distributed speech recognition task. The objective of current speech compression techniques is to
minimize perceptual distortion. In this project, however, we investigate efficient compression
techniques that achieve low bit rate transmission, while incurring a minimal degradation of
automatic speech recognition accuracy (as compared to the performance with uncompressed
data). Intended applications of this project will be in cases where speech acquisition is done
using low power, and possibly mobile, devices while the more complex speech recognition task
is performed at a remote server [3]. This framework can be used either on the Internet or in
wireless networks.

In addition we are studying approaches to measure the similarity between music files. We are
working on improving some previously proposed techniques [16,17], and our following step will
be to develop techniques so that the features used in comparing music files can themselves be
compressed. One key element of this project is to try to establish links between low level
features and perceptual similarity as perceived by humans. For this purpose we have developed
web-based tests to determine the relative importance of the low level features.

3. Project Role in Support of IMSC Strategic Plan

This work is being developed with a close collaboration between a speech analysis-recognition
group and a compression group. We foresee two major applications for this work. First in very
low rate MIE scenarios (wireless links) we provide functionality for a mobile user to interact
with a remote database through a speech recognition interface. Second, this work, along with its
extensions to image/video is useful for multimedia databases, where the data is stored in
compressed format and visual features such as color, texture, shape have to be extracted and used
as indexing keys. The key difference between prior efforts and our ongoing research is that we
consider distributed systems where the end-user is accessing a remote database or system and
thus only limited bandwidth is available, and the impact of the transmission latency must also be
taken into account. Refer to [12] for detailed information.
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4. Discussion of Methodology Used

The scenario we consider is a distributed speech recognizer system as shown in Figure 1. The
speech is acquired at the client, which can be a mobile device with limited computational
capabilities. The features required for recognition are extracted from the acquired speech at the
client. These features are quantized and transmitted to a remote server hosting the speech
recognizer. This architecture allows low complexity (possibly mobile) devices to support speech
recognition applications. One of the main challenges in a DSR system is to develop a speech-
coding algorithm, which minimizes recognition degradation rather then minimizing perceptual
distortion. In our recognition system we have used Hidden Markov Models [1] as the speech
recognizer. 12 Mel-Frequency Cepstral Coefficients (MFCC) [2] are extracted for every acoustic
frame.

5. Short Description of Achievements in Previous Years

We use a one-step prediction of the MFCC vector, wherein the current vector is predicted from
the previous vector. The prediction error is quantized using either an ECSQ or USQ. For the
ECSQ case different scalar quantizers are designed for every coefficient in the acoustic frame.
Importance of each of the coefficients, in the acoustic frame, towards recognition performance is
found. Based on the importance of the coefficients we can prune the acoustic frame by dropping
some of the coefficients at the encoder, in order to achieve lower bit rates. For best performance
we retain a different number of coefficients in every acoustic frame based on the importance of
each coefficient in the acoustic frame. Dropping coefficients is made transparent to the speech
recognizer because the decoder replaces by zeros all those coefficients that were dropped before
inputting the frame into the speech recognizer. A block diagram of a Client-Server model to
implement the proposed idea is shown in Figure 1.
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Instead of explicitly pruning the coefficients better trade-off between the bit rate and recognition
is possible by implicit pruning. Here the assumption is that larger prediction errors are more
important. By using USQ with a dead zone we can easily set small prediction errors to zero.
Scalability is achieved by changing the quantization step size: coarser step size results in lower
rate and vice versa. Moreover, whenever a prediction error is quantized to zero we use the
predicted value for the coefficient (rather than set the coefficient to zero), which affects less the
recognition performance than pruning the coefficient altogether.

Entropy encoding is used to encode the quantization indices. This is combined with a run length
encoder, which is used to encode the bitmap, which indicates to the decoder the position of the
non-zero coefficients in each frame. Since we use a bitmap only the non-zero coefficients need to
be encoded and this enables us to achieve even lower bit rates.

The algorithms we are developing [10] are scalable, that is, we can choose to lower the bit rate
(for example in cases when the bandwidth is lower) by dropping more coefficients at the
encoder. For example, our current algorithm when tested on a digit database is capable of
operating between 0.77 kbps and 2 kbps, with recognition performances for these bit rates being
98% and 99% respectively. The corresponding recognition performance for uncompressed
acoustic features for the digit database is 99.8%. Thus, the degradation in recognition
performance by using our method is minimal. For an alphabet database we achieved recognition
of 80% and 82 % for bit rates of 0.8 kbps and 2 kbps respectively. The result obtained with
uncompressed acoustic features was 82.66 %.

While the method proposed in [6] has similar recognition performance for the digit database, it
suffers from the drawbacks of higher bit rate, higher encoding complexity and no scalability. The
bit rates for the method proposed in [5] ranged from 2.6 kbps to 10.4 kbps, with recognition
performance being 91% and 93.5% respectively.

We achieve the same or better recognition performance than that achieved by the methods
proposed in [5.6] using bit rates lower than 1 kbps. Also our encoding algorithms are scalable,
allowing a bit rate and recognition performance trade-off, and can be combined with unequal
error protection or prioritization to allow graceful degradation of performance in the presence of
channel errors. Performance results are shown in Figures 2 and 3. Table 1 shows the CPU time
required to recognize and encode an utterance from the digit database.

Speech Recognition ECSQ USQ
0.156 s 0.067s 0.047s

Table 1
Cpu time on a Sun workstation to recognize an utterance from the digit database and time
required to encode it
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Figure 2. Recognition performance of the different encoders for the digit database

Figure 3. Recognition performance of the different encoders for the alphabet database
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Scalable distributed speech recognition
A completely scalable distributed speech recognition (DSR) system combines the scalable
encoder with a scalable speech recognizer. Such a system enables reduction of both
computational load and bandwidth at the server. A low complexity pre-processor is used at the
server to eliminate the unlikely classes so that the complex recognizer can use the reduced subset
of classes to recognize the unknown utterance. To reduce the bandwidth requirements at the
client, the pre-processor operates on the base layer of the compressed bitstream. When the pre-
processor can not make the recognition decision, the server requests for additional layer(s) from
the client and the final recognition stage operates on the refined data. A block diagram of this
system is shown in Figure 4. With this scalable system it is fairly straightforward to trade-off
between complexity, bandwidth and recognition performance. As a proof of concept we
implemented a scalable system [13], which used a template-based dynamic time warping (DTW)
recognizer and a hidden Markov model (HMM) recognizer for the low and high complexity
schemes, respectively. A novel layered DPCM encoder based on the consistency criteria
proposed in [14], is used at the client.

Figure 4. Scalable distributed speech recognition system

The low complexity recognizer operates on the coarse MFCC data to make the recognition
decision. The high complexity recognizer uses this recognition decision and the enhancement

MFCC data to make the final recognition decision.
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The most important performance metrics in a DSR system are:
• User delay
• Client bandwidth
• Server bandwidth
• Server complexity

The operation of the scalable system can be changed depending on which of the above
performance metrics is to be optimized. In what follows we describe how our techniques can be
used under three different scenarios, with different optimization criteria.

User delay minimization
When the most important constraint is the time taken between the user speaking and the result of
recognition, we can generate both the base and enhancement layers immediately and transmit
both to the server. The server uses the base layer with the DTW and if only one model is present
in the N-best list, the result is sent back to the client; if the N-best list contains more than one
model, the enhancement layer (which is already available at the server) is used by the HMM to
get the final recognition result. By this method we can ensure that the delay experienced by the
user is minimized, while also keeping low the server complexity. However, in this scenario, the
client and server bandwidth requirements will be increased.

Client and Sever bandwidth minimization
In bandwidth-constrained situations, initially only the base layer is transmitted to the server.
After the DTW stage, if required the enhancement layer is requested from the client. As can be
seen from this procedure, both client and server bandwidths can be low, and the server
complexity can also be kept low. However the absolute delay experienced by the user can be
high (for cases where the DTW is not able to make the final decision).

Server complexity minimization
Irrespective of all other constraints, we can always ensure that the complexity at the server is
reduced, as mentioned in the above two cases. However when user delay is a constraint, the
memory requirements at the server will be increased since the enhancement layer will have to be
stored for future use.

Figure 5 shows the effect on recognition performance as the bit rate is changed it is reduced.
With 2 levels of DTW followed by an HMM speech recognizer we were able to achieve the
same word error rate (WER), 0.24 %, as with unquantized MFFCs at a bit rate of 1.1 kbps. If we
are willing to tolerate higher WER we can further reduce the bit rate (0.63 % WER at 0.77 kbps).
Figure 6 shows the trade-off between recognition performance and complexity. Using only an
HMM requires about 28 sec to recognize 1267 utterances from TI46 database (about 1400 sec of
speech). With the scalable system this can be reduced to 20.5 sec with no increase in WER.
Again if we are willing to tolerate higher WER the time required can be reduced to 14 sec (a
50% reduction in server complexity).



122

Figure 5. Recognition performance of the scalable DSR in a bandwidth constrained
scenario

Figure 6. Recognition performance of the scalable DSR in a complexity constrained
scenario
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Model adaptation for distributed speech recognition

It is well known that for a given task, speech models trained on task-dependent data usually
outperform models trained on task-independent data. One of the major problems for robust
speech recognition is the mismatch between the training and testing conditions. Speech
recognition performance, with speech models trained on clean data, significantly degrades when
the test utterances are noisy (channel noise, ambient environment noise). Similarly the
performance is also degraded due to long term and short term speaker variations. Also speaker
dependent models are known to usually outperform speaker independent models. With wider use
of speech recognition applications especially in mobile devices we have an additional source for
mismatch: speech encoding. The distortion introduced by speech encoders can also be thought of
as a mismatch between the training and testing conditions. It is relatively easy to remove this
mismatch by the use of a family of models each trained with data from different encoding
schemes, and choose the one that best matches the unknown test data. However, this scheme is
not attractive since it might not be possible to have models trained for all the different
compression schemes, because the choice of the compression scheme used by the client depends
on the computational resources/load at the client and the quality of service (QoS) it wishes to
provide the user. Scalable encoders, which could be combined with scalable recognition
schemes, further complicate the creation of pre-defined models. Depending on the optimization
criteria used for compression (classification vs. human perception), more variability in the
compression schemes used by the different clients can be expected.

This mismatch introduced by the choice of different speech compression schemes can be solved
in similar manner as other mismatches [15]. The models at the server can be trained using clean
speech (or a particular compression scheme) and alleviate the mismatch between testing and
training phases by the use of model transformation/adaptation to optimize classification by
ensuring that the transformed/adapted models are more likely to have produced the observed
data. Note that simple signal processing techniques are not likely to be helpful as the distortion
introduced by compression is not invertible, however adaptation schemes which operate on the
models rather than the input speech are more likely to be able to reduce the mismatch. The two
popular adaptation techniques used previously are MLLR and MAP. Table 2 shows the
recognition performance for the TIDIGITS connected digits database for different encoding
schemes. MFCC-LR and MFCC-HR are the linear prediction based quantization schemes
described before operating at 1.22 kbps and 2.07 kbps. We can observe that with adaptation we
are able to significantly reduce the WER for the different encoding schemes. For the MFCC-HR
encoder with MLLR adaptation the recognition performance is almost the same as that achieved
with clean speech.
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Compression Clean Models MLLR Adaptation MAP Adaptation
Clean Speech 1.88 1.57 0.67
MELP 3.14 2.32 1.19
GSM 2.50 1.73 0.91
MFCC-HR 4.81 2.24 3.34
MFCC-LR 2.10 1.60 0.91

Table 2
 Model adaptation for different encoding schemes

5a. Detail of Accomplishments During the Past Year

Scalable distributed spoken names recognition task

The isolated digits task is a low perplexity task; here we consider scalable recognition for a high
perplexity task. Consider a two stage spoken name recognizer with dictionary lookup (Figure
[7]). Such a two stage approach has been used for spelled name retrieval [18], information
retrieval [19], complexity reduction of a phone based continuously speech recognition system
[20] and spoken name recognition [21]. In the first stage a low complexity bigram phone loop is
used to identify the N-best phone sequence corresponding to the input utterance. The next step
involves a string match, where each of the N-best phone sequences is compared to the entries in
a dictionary. The utterances corresponding to phone sequences, which have a distance less than a
given threshold (the threshold is usually chosen as a function of the number of phones in the
recognized phone sequence) from the recognized N-best phone sequence are selected to generate
a lattice. The final stage involves rescoring this generated lattice using more complex acoustic
(triphone) models.

Consider a spoken names recognition task [22,23], which among other applications is used in
network-based applications e.g., directory assistance, and caller identification. In these
applications the list of names tends to be quite large, in the order of hundreds of thousands.
Variability in pronunciation further increases the perplexity. The traditional approach to name
recognition has been to use a finite state grammar (FSG), where all the names (with all possible
pronunciation variants) are alternate paths for recognition. For a name utterance the recognizer
evaluates all possible paths and selects the name corresponding to the most likely path. As the
names list grows it is evident that the computational complexity increases and the recognition
accuracy will drop. An alternative approach with reduced computational complexity is to adopt a
two-stage recognizer with dictionary lookup. Figure [7] illustrates this approach. The accuracy
obtained by the two stage recognizer for spoken names task is comparable to the conventional
single stage FSG based approach (as shown in [21]) but results in significant savings in
complexity, since the lattice only consists of a subset of the entire names list. The dictionary used
for lookup is a names dictionary, which consists of all possible names along with their
pronunciations. In our experiments we used the Levenshtein (or edit) distance during dictionary
lookup to compute the string match distance between phone sequences. The Levenshtein
distance between phone sequences p1 and p2, LD (p1, p2), is the minimum cost associated in
transforming p1 into p2 by deletions, insertions and substitutions.
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This two stage names recognition procedure is summarized below.
Scalable Spoken Names Recognition
Step 1: Identify the N-best phone sequences pr

n for the name utterance using a bigram phone
loop, for n=0,1,..., N-1.
Step 2: Find Tn corresponding to pr

n from Table [3], for n=0,1,…, N-1.
Step 3a: Initialize i = 0
Step 3b: For name i in the names dictionary find the corresponding phone sequence pi.
Step 3c: If LD (pr

n,pi) < Tn, for any n=0,1,…, N-1, add name i to the names lattice.
Step 3d: If there are more names in the dictionary set i=i+1 and go to Step 3b else go to Step 4.
Step 4: Rescore the names lattice using context-dependent models to get the final result.

When the spoken names recognition system is used in a DSR system [25] with a variable-rate
encoder, both recognition stages, i.e., the phone loop and the lattice recognizer operate on the
same compressed data. The phone loop is a bigram CI phone loop. The resulting lattice after
dictionary lookup can be refined using either CI or CD models. The results obtained for these
two cases for different bit rates is shown in Figures [8] and [9]. We observe that in both cases
there is small degradation in performance when the bit rate is greater than 2500 b/s. However it
is clear that with the proposed encoder we can trade bit rate for recognition performance. The
average number of names in the lattice when compressed data was used was approximately
1140, which is almost the same as when uncompressed data was used, i.e., compression did not
increase the lattice size.

Table 4 compares the degradation due to compression with the proposed encoder and Aurora
encoder [24]. Notice that the proposed encoder provides both a lower rate and has a lower WER
degradation than Aurora.

Length of phone sequence Threshold
less than 4 3

4 or 5 4
greater then 5 5

Table 3: Thresholds used during dictionary lookup

Encoding technique CI CD Rate (b/s)
Aurora 0.86 0.77 4400

0.33 0.13 4050Proposed variable rate
encoder 0.36 0.47 3600

Table 4: Absolute percentage increase in WER for the proposed encoder and Aurora.
Observe that even when the proposed encoder operates at 3600 b/s it is superior to Aurora

Scalable DSR encoder
When the proposed scalable DSR encoder is used at the client, a base layer and an enhancement
layer are transmitted to the server for every name utterance. Now the bigram CI phone loop uses
the base layer to generate the N-best phone sequence. This is used by the dictionary lookup to
build the list of names for the lattice recognizer. The lattice recognizer rescores the names list
using the enhancement layer data to get the final recognized name result. Note that the phone
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recognizer and the dictionary lookup need not wait for the enhancement layer data to be
received.

The recognition results obtained with the above procedure for the names task are shown in
Figures [10] and [11]. Observe that when the base layer rate is 2580 b/s and the enhancement
layer is 2000 b/s the recognition result obtained with CD models is the same as that obtained
with a variable-rate encoder at 4040 b/s (Figure [9]).  Because the base layer rate is only 64% of
the rate used by the variable-rate encoder the first stage recognizer (phone recognizer and
dictionary lookup) completes more quickly which ensures that the second stage (lattice
recognizer) can begin earlier and complete much faster in systems employing a scalable coder
while achieving the same recognition performance (however there is a 13% increase in rate by
adopting a scalable scheme).
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Figure 7: Two stage names recognition approach using dictionary lookup.

Figure 8: Names recognition results when CI models are used in the lattice recognizer.
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Figure 9: Names recognition results when CD models are used in the lattice recognizer.

Figure 10: Names recognition results when the scalable encoder is used at the client and CI
models are used in the lattice recognizer.
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Figure 11: Names recognition results when the scalable encoder is used at the client and
CD models are used in the lattice recognizer.

6. Other Relevant Work Being Conducted and How this Project is Different

There are a few papers published on the distributed recognition problem. Digalakis et al. [5] have
shown that compressing the feature vectors that are used in speech recognition is effective. They
evaluate uniform and non-uniform scalar quantizers, vector quantization and product-code
quantization of the acoustic features and achieve bit rates between 2.6 kbps and 10.4 kbps.

Ramaswamy and Gopalakrishnan [6] also compress acoustic features used in speech recognition.
In their method, correlations in frames of the acoustic features are exploited by linear prediction,
and they use 2 stage Vector Quantizers to quantize the prediction errors. With this scheme they
achieve a fixed rate of 4 kbps.

In our work [10], we use first order linear prediction and scalar quantizers to compress the
acoustic features. The use of scalar quantizers as opposed to vector quantizers reduces the
computational cost. More efficient design of scalar quantizers considering the importance of
every element in the acoustic frame enables better compression performance. To quantize the
acoustic features we use two different techniques, namely, entropy constrained scalar
quantization (ECSQ) [7] and uniform scalar quantization (USQ). The proposed methods in [5.6]
only exploit the redundancy and correlation in the acoustic feature data, and do not consider the
classification properties of the speech recognizer. In our recent work [11] we have proposed
efficient joint design of quantizers, which can work in conjunction with a complex classifier. The
goal there was to minimize the classification error introduced by quantizing the data using



129

encoders operating on low dimensional inputs, which are subsets of the high dimension data used
by the classifier for classification. This situation is analogous to the problem we are trying to
solve here, i.e., we are independently quantizing every frame of the acoustic features, while all
the acoustic feature frames are used for recognition. By using the techniques developed in [11] it
is hoped that we can achieve even better rate-recognition tradeoffs.

7. Plan for the Next Year

As mentioned above, in order to improve the performance of our algorithms, we need to tightly
couple the compression algorithm to the processes to be performed by the HMM-based
recognizer. This will allow us to determine, based on knowledge of the HMM processing, what
information in the acoustic frame is most important for classification and recognition. Traditional
joint compression and classification schemes [8,9] have assumed that the dimension of the
classifier and compressor are the same. However in the case of interest we are using scalar
quantization of the features, while using an HMM which essentially performs a vector
classification. This problem, where recognizer and compressor have different dimensions has
hardly been studied, and we are already devoting a significant effort to solving it.
Fundamentally, compression and recognition are similar processes, but they use very different
cost functions (fidelity in reproduction versus accuracy in the recognition) and they operate at
significantly different time scales (much larger scale for recognition, for example). Our ultimate
research goal is to bridge the gap between these two problems, and provide ways of trading off
compression and recognition performance.

In the short term we are investigating different metrics for the speech encoder design which are
directly relevant to the HMM operation. In the long term we want to integrate the scalable
speech compression techniques with the techniques developed when the dimension of the
classifier and compressor are different to develop an integrated distributed recognition system.

We are currently testing music similarity metrics to determine how they relate to perceptually
important features. Several undergraduate students are involved in this project and are already
contributing. Progress in this area will eventually lead us to developing novel techniques for
compression of the relevant features.

8. Expected Milestones and Deliverables

Extending on the work done before in this field, we have shown that the optimal solution to
compressing speech for speech recognition has not yet been reached. The gain got by using the
redundancy in the acoustic frames is limited. To get further performance improvements we will
need to consider the properties of the speech recognizer while compressing the acoustic frames.
We have also addressed the complexity and encoder variability issues in distributed speech
recognition systems.

9. Member Company Benefits

No companies have directly supported this project, but we have been active in publicizing the
work at conferences and to potentially interested companies. As an example, the graduate student
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most directly involved in this project was a summer intern at Speechworks, where he worked on
a related project. We have also discussed some of these ideas with researchers at Nuance and
Panasonic.
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