Distributed Haptic Environments

Faculty: Gaurav S. Sukhatme, Margaret McLaughlin
Student: Weirong (Wayne) Zhu, Laehyun Kim

Research Goal

Design an architecture that will support collaborative touch in a virtual environment called virtual haptic world.

- Collaboration over a non-dedicated channel (such as an Internet connection), which can adapt to current communication bandwidths and delays.
- Collaboration in multi-user environments with heterogeneous haptic devices (e.g., the PHANToM, the CyberGrasp, the iFeelmouse)
- The psychophysics of haptic collaboration

Role in IMSC

Distributed haptic environments is one of the projects that addresses haptic issues to make the MIE a reality.

Accomplishments

- An new architecture has been developed for the real time collection and simultaneous broadcast of haptic information.
- Adding and removing remote nodes and objects dynamically.
- Forming local group by communication delays between nodes
- An new mutual touch demo has been developed based on the new architecture.
- A mutual touch experiment on touch recognition and discrimination in multi-user, heterogeneous haptic environments
- Implicit haptic rendering techniques

Research Approach

- Each node has a local database which contains information about nodes and objects in the haptic world.
- Haptic data are exchanged between nodes.
- Local groups are formed according to communication delays.
- Objects in a local group interact to each other by simulating Newton’s laws.
- Prediction and interpolation can be used to reduce network traffic and network delay.
- Haptic Rendering Algorithm
 - Based on a hybrid surface representation
 - Fast & stable, no force discontinuities
 - Novel haptic texturing and painting
 - Volume-based haptic sculpting

Uniqueness & Related Work

Uniqueness
- A distributed architecture for real-time collection and simultaneous broadcast of haptic information to multiple haptic session participants
- Users can use disparate haptic devices.
- The interaction between two hosts is decided dynamically based on the measured network latency between them.
- Haptic rendering based on a hybrid representation
- New haptic editing and sculpting techniques

Related Work
- Comparison of cooperative tasks of moving a ring back and forth along a wire in the dual modality (haptic plus graphic) and the single modality (graphic only) conditions

5-Year Plan

2003-2005

- Development of basic haptic collaboration architecture to share a virtual environment between PHANToMs and CyberGrasps
- 3D visualization of haptic environments using the Immersadesk

2005-2007

- Integration of haptics with other modalities, such as simulated contact sounds (3D), voice.
- Integration of haptic collaboration with other IMSC projects (e.g., the Haptics Museum and BioSIGHT)

2007-2009

- Full integration of haptics within the MIE