

Human Upper Body Pose Estimation in Static Images

Mun Wai Lee, Isaac Cohen

1. Research Goal

2. Role in IMSC

- Image understanding for human activities recognition
- Image indexing and retrieval, data mining
- Extending to human body tracking for video analysis

3. Research Approach

- 4. Human Wodel
- Articulated Structure (21D)
- Probabilistic Shape (6D)
- Clothing Sleeve Length (1D)

5. Image Observation

Local observations that generate hypotheses for body joint positions

6. Proposal Maps

- Generated from image observations
- Importance sampling probability distribution approximated by grid-based representation

7. MCMC and Proposal Distribution

- □ Markov chain generates samples of state, $\{m_i\}$, to approximate posterior distribution
- □ Metropolis-Hastings algorithm: At the *t*-th iteration, a candidate m is sampled from $q(m_i|m_{t-1})$ and accepted as the new Markov state with probability

$$p = \min\left\{1, \frac{p(m' \mid I)q(m_{t-1} \mid m')}{p(m_{t-1} \mid I)q(m' \mid m_{t-1})}\right\}$$

Three types of Markov chain dynamics:

- 1. Random-walk Sampler
- 2. Proposal Jump Dynamic
 - Dynamic involves one joint at a time
 Sample image position from proposal map
 Update pose with inverse kinematics
- 3. Flip Dynamic
 - Flip a body part along depth direction

8. Results

9. Accomplishment and Future Work

Publications

European Conference Computer Vision, 2004
 Computer Vision Pattern Recognition, 2004 (Oral)

Future Work

Estimate more complex, full body poseInitialize human body tracking in video