
111

YimaCast: A Collaborative Distributed Audio Chat System

1. Research Team

Project Leader: Prof. Roger Zimmermann, IMSC and Computer Science

Other Faculty: Prof. Wee Ling Wong, IMSC and Biomedical Engineering

Graduate Students: Rahul S. Hampole, Leslie S. Liu, Beomjoo Seo

Undergraduate
Students:

Brent Nash

Industrial Partner(s): Intel

2. Statement of Project Goals

The expanding capabilities of the Internet to handle digital media streams is enabling new
applications and transforming existing applications in many areas. One of the fields that is
profoundly affected is higher education. Traditionally, students have attended classes in lecture
halls on college and university campuses. The next step was distance education, enabled via
video satellite links. More recently, new communications media have broadened the potential
audience and allowed anybody with a broadband Internet connection to potentially receive audio,
video and slide presentations on their computers. The YimaCast project aims to provide a
foundation for collaboration tools that would make the student experience more interactive. Our
first project is a multi-user audio chatroom system called AudioPeer that is designed to allow
groups of students to discuss assignments, allow teaching assistants to conduct lab sessions, and
enable student questions and feedback during lectures. Our goal is to provide users with
interactive audio experience, which is scalable, practical, integratable and extensible with new
features.

3. Project Role in Support of IMSC Strategic Plan

With the YimaCast infrastructure project, we are building a platform that can enable many of
IMSC’s ongoing basic research achievements into an educational environment, e.g., voice-to-text
search, human-machine interfacing, audio concealment, multimedia streaming etc.

4. Discussion of Methodology Used

Our system is designed to provide an efficient audio chat application with low audio latency. To
be scalable, we propose a low bandwidth consuming overlay network called YimaCast.
Moreover, audio mixing is performed at each multicast member to reduce the network
bandwidth. YimaCast supports large number of simultaneous audio chat sessions. While
YimaCast provides tree management within a session, session-wide management is integrated
with existing solutions.

112

Our system, based on the YimaCast protocol, consists of four components as shown in Figure 1.:
AudioPeer, Rendezvous Point (RP) server, Authentication server, and Voice2text index server.

Figure 1: YimaCast is based on a peer-to-peer structure and includes various advanced
components such as a topology viewer and a voice-to-text converter.

A brief summary of the techniques employed are as follows:
• Peer-to-peer based architecture to provide good scalability.
• Many-to-many streaming gives virtually no limit to the number of speakers and an enhanced

sense of enrollment.
• Software-based audio mixing takes advantage of fast growing computing power (Moore’s

Law) and enables the system to easily support additional control logic.
• Activity-based dynamic tree rearrangement optimizes the distribution tree to lower the delay

between active speakers and listeners while at the same time increasing the audio quality for
the listeners.

• The TCP protocol is used to reach users connecting from behind NAT firewalls.
• The Voice2text Index service enables users to index audio materials in text format and

perform text-based search on these materials.

113

5. Short Description of Achievements in Previous Years

All four major components of the system as proposed are currently operational. On December 2,
2003, the final review of the CSCI585 “Database Systems” class was conducted with our system.

5a. Detail of Accomplishments During the Past Year

We implemented the first version of AudioPeer client, which come with a GUI that enables users
to configure audio and network parameters. With the embedded web browser, use can join a
conference after authentication, do a query on pre-recorded audio files and then retrieve them.
All AudioPeer users are organized and cooperate with each other through an application-level
multicast protocol called YimaCast. Multiple audio streams can be transported at the same time
to all users. Audio streams are mixed at each node to reduce bandwidth requirement. Yimacast
can handle unpredictable node failure and automatically reorganize the multicast tree to maintain
a system wide consistency. Currently PCM and GSM.610 based audio encoding are supported in
our system.

• The Authentication server is built to talk with the existing DEN web service. Students and
class information are automatically pulled from the university’s registration database. After
the authentication completes, various types of information are provided to help users know
current status of the system and decide which session to join.

• We implemented our Rendezvous Point (RP) Server on a Linux server, which has a well
know name for all current AudioPeer Clients. RP Server provides the clients with session
and active user status. All user activities are also stored in RP Server for research and
administration purpose.

• Voice2Text Server is integrated into our system through a dedicated web link shown on
AudioPeer Client. Users can perform a keyword search on recorded class sessions and
retrieve all relative clips of audio files. Currently the uploading of the recorded audio file
onto Voice2Text Server is done manually.

We also conducted an experimental chat for CSCI585, Fall 2003, during which user activity data
and comments were collected.

Figure 2: AudioPeer systems integrated with the Blackboard software for authentication running
on a desktop and a laptop computer.

114

6. Other Relevant Work Being Conducted and How this Project is Different

Our system is designed to integrate different components for efficient, easy-to-use, scalable live
audio chatroom service: web-based session management, shared tree based application-level
multicast delivery, live recording and retrieval, speech recognition service, and audio mixing.
There have been several related work done in audio mixing and multicast area. But to the best of
our knowledge, no research on providing integrated services like ours has been reported.

Among the existing audio mixing based systems, hierarchical mixing architectures [1] place all
participants at the leaf nodes and locate the mixers at non-leaf nodes. A mixer relays the audio
coming from its children to the parent after mixing. A root mixer broadcasts the mixed audio to
all participants through the IP multicast network. Several commercial products such as the
ClickToMeet Conference Product [2], formerly CUseeMe, construct an efficient delivery path
(full-mesh or multicast) among the mixers. But because most of these products are integrated
with video conferencing applications, they have unnecessary network waste and cannot fully
take advantage of audio mixing. In end-system mixing architecture [3], one of the participants
works as a mixer. But above systems do not describe how to build efficient delivery paths among
mixers and participants.

IP Multicast was originally developed for efficient communication among routers at the IP level
by sending a single copy of the transmitted data to all group members. The Multicast backbone
(Mbone) was popular in transporting the video and audio through IP Multicast. But
unsatisfactory deployment of IP Multicast motivated researchers to suggest various kinds of
application-level multicast protocols. Application-level multicast only uses information provided
at the application level to transmit data. Various many-to-many protocols are classified as mesh
based, tree based, cluster based and Distributed Hash Table (DHT) based architectures. The
mesh based architecture connects nodes in a mesh form, e.g. Narada[4]. Each node constructs a
single-source multicast tree from the mesh structure. But due to its centralized nature, Narada
does not scale well. Tree based architectures include Yoid [5] , HMTP [6] and our proposed
YimaCast, which connect nodes in the form of a tree to stream data. NICE [7] was developed as
a hierarchical architecture which combines nodes together into clusters and selects parents
among these clusters. The process is repeated to form a hierarchy. DHT based architectures use
hashing mechanisms to generate node identifiers such that nodes closer to each other logically
have similar node identifiers. They then create a multicast tree on top of this substrate.
Pastry/Scribe [8] and CAN/CAN [9] Multicast are architectures based on this concept. These
systems are designed to support a large number of users with acceptable delay penalty and link
stress. All the application-level multicast protocols fail to recognize the feasibility of
constructing a more efficient topology if allowing the aggregation of audio packets along the
delivery path.

7. Plan for the Next Year

There are several augments we planned for next year. First, we are going to refine our Yimacast
protocol, wield it with the capacity to dynamically rearrange the multicast tree based on the
user’s activity. The basic idea is to put active speakers (users who talk a lot) close to each other
on the multicast tree. Also, floor control logic is also being added to Yimacast protocol. Second,

115

we are going to implement an administration interface, which can visualize the on-going chat
sessions and provide an operator with various functions to monitor and control the whole system.
Third, we will refine our audio encoding module and make it more reliable and reduce the
processing delay. Fourth, we will continue to refine the Voice2Text Server and make the
processing of recorded audio materials performed automatically by the system.

We are also going to schedule more experimental uses of the system next year. We are planning
to do a beta test on a class of Spring 2004 and collect more data. A campus wide deployment of
the system on Fall 2004 is also within the sight of our plan.

8. Expected Milestones and Deliverables

Next year we are planning to finish the implementation and test of the new system and give it to
DEN (distance education network) for practice use. We are also planning to perform analysis of
the data that we collected from DEN after its deployment. Following are some key issues:
• Refinement of YimaCast Protocol. New version of YimaCast protocol will includes the

capacity to dynamically change the multicast tree to maintain or augment the QoS service in
terms of end-to-end delay and audio playback quality.

• Performance Evaluation. We’d like to do a large-scale simulation on NS2 platform and
compare the performance of YimaCast with existing protocols.

• Data analysis. After collecting data through the use of the system at DEN, we are going to
conduct some analyze to get the statistics of user activities on the educational chatting
environment.

9. Member Company Benefits

The YimaCast infrastructure and the AudioPeer prototype system are being built partially with
equipment donated by Intel.

10. References

[1] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using
content-addressable networks. Lecture Notes in Computer Science,
[2] C. T. Meet. http://www.fvc.com/.
[3] K. Singh, G. Nair, and H. Schulzrinne. Centralized Conferencing using SIP. In Internet
Telephony Work-shop, April 2001.
[4] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang. En-abling conferencing applications on
the Internet using an overlay multicast architecture. In ACM SIGCOMM 2001, San Diego, CA,
Aug. 2001. ACM.
[5] P. Francis. Yoid: Your own Internet distribution.
[6] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: A Framework for Delivering Multicast
to End Users. In Proceedings of IEEE Infocom, New York, June 23-27, 2002.
[7] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast,
2002.
[8] M. Castro, P. Druschel, A. Kermarrec, and A. Row-stron. SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in

116

communications (JSAC), 2002.
[9] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using
content-addressable networks. Lecture Notes in Computer Science, 2233:14–32, 2001.

