
Indexing Multi-dimensional Stream Data in a
Cloud System

Application

•  Internet-scale applications, where hundreds of servers are used to support
terabytes of data and millions of users.

•  Goals: Insert and search efficient distributed index structure.

Afsin Akdogan, Ugur Demiryurek, Cyrus Shahabi

Integrated Media Systems Center
University of Southern California

Chord-Quadtree

Related Work

Centralized Algorithms

•  Full replication of data.

•  Cannot handle dynamic data. Update/insert should be done in all machines.

•  Doesn’t work if the data don’t fit in a single machine.

•  Doesn’t take advantage of GBytes of distributed RAM.

Parallel Databases

• Not completely decentralized. Not scalable. Overloads controller.

•  Controller keeps a global index. Global index is proportional to the data size of the
data. It doesn’t scale well.

•  Inserts/Updates on the data should be sent to the controller too.

•  All requests go to controller first since it manages query answering process.

Distributed Index Structures

•  Top-down search overloads the nodes

 near the tree root.

 The balancing needs to fully rebuild the tree

 using multicast from all servers (distributed kd-tree).

•  Traverse the tree from bottom-up. Avoids hotspots.

•  Too costly to maintain the index for frequent inserts.

Insertion cost

Overlapping Coverage Cost

Split Cost

 Balancing cost

Introduction

Future Work

ICampus 	
 IWatch	
 CT 	

•  The amount of geospatial data is rapidly
growing and geospatial queries are time
consuming problems especially with large
datasets.

R1 R2 R3

Insert new object(om)

Rn
…

P1 P2 P3

Controller

Query %100

%50

%25

•  Indexing space by Quadtree to handle fast insertion rate.

•  Quadtree might have long paths due to non-uniform data.

•  Store a routing table at each node for faster
search.

•  Only split causes update of the routing tables
which is very infrequent.

Advantages

•  It can efficiently handle frequent inserts.

•  It finds successor node in O(log N) where
there are N nodes in a path from root to leaf.
Fast search.

•  No top-down search. We convert the
Quadtree into an undirected graph. Better load-
balancing due to the fact that any node can
start the query.

•  Support point and window queries as the other approaches explained above since
those are the queries used by internet applications the most.

•  Conduct extensive experiments to test:

•  Insert/Update performance of the index.

•  Search performance of the index in the presence of millions of concurrent queries.

