Realtime Traffic Video Analysis Using Intel Viewmont Co-processer

Daru Xu, Junyuan Shi and Seon Ho Kim
Integrated Media Systems Center
University of Southern California
ICampus \checkmark IWatch CT \checkmark

Introduction

-Verify operation of Intel Viewmont co-processor with SDK
-Implement vision-based algorithms to extract traffic flow data using Viewmont
-Demonstrate integration of Microsoft Streaminsight and Azure Cloud platform as part of end-to-end system

Vehicle Detection and Counting
Vehicle Representation
-Day-time: background subtraction, motion image generation, morphological operation, each car is presented as a complete block

-Night-time: headlight detection, based on luminance thresholding

-Calculate the percentage of motion points over each virtual line:

- If higher than predefined threshold, then car passing is detected

Speed Estimation

Moment that car is detected
T1 T2
$\Delta T=T 2-T 1$
$V=L / \Delta T$

Challenges

-Environmental impact on visual clarity: night, rain, shadow, wind, etc.

False car count: light reflection
-Comparison of results from loop detector

- Most locations of cameras and sensors are significant different to make the comparison hard
- Manual verification of most comparable location is time consuming

Related Work

-Video processing techniques for traffic flow -tripline, closed-loop tracking, data association tracking
-Solutions, limitations, problems have been studied Industrial products
-Iteris, Autoscope, Traficon, etc
-Rack mounted dedicated systems and cameras -Data acquisition and event detection

Experiments and Evaluation
-Experiments are done on videos captured from CalTrans live traffic monitors. -Different weather and traffic situation are considered for robustness test.
-Performance analysis is conducted by comparing data generated by our program, ground truth data and sensor data.

- Screen capture of program processing:

-Location pairs shown in Google map: P ensor location, Qamera location.

-For counting number of vehicles, we can limit the error below 8% comparing to ground truth data. For estimating speed, the difference comparing to sensor data is averagely within 6 mph .

Conclusion and Future Work

-We can generate accurate vehicle counts and reasonable speed estimation for most cases.
-Future work includes:

- Develop new schemes to deal with more complex weather and traffic situations, such as bad environment and bad camera angles.
- Optimize program and workflow to reduce time cost for better real-time application.
- Propose and develop new functionality of traffic analyzing based on current approach, for example, to calculate ratio of big vehicles over normal cars, traffic accident identification and so on.

