Emergence of social networks and Web 2.0 applications makes it interesting to see how social data can be used in improving the traditional textual search on the web.

We can improve the effectiveness of web search by utilizing social data available from users, users' actions and their underlying social network on the web.

A socio-textual query is defined as $Q = (K_q, S_q)$, where K_q is the textual part of query specified as a set of keywords in the query and S_q is the social part of query specified as the user u_q issuing the query and the social network G.

Application/Project

- Web 2.0 applications
 - Recommendation based on user's friends
 - Re-ranking the search results
- Web search
 - Re-ranking of search results based on actions by user's friends

Challenges

- How to measure the relevance of document to the query
 - Social Relevance?
- How to combine social relevance with textual relevance accurately and seamlessly?
- How to quantify the importance of users in the network?
- How to model and quantify the relevance/relatedness of users to each other?
- How to evaluate the new model/results?
- How to test the proposed model on a real dataset with real users
 - With documents/objects with textual tags/keywords
 - With social network/friendship

Related Work

- Search Services
 - People through their social networks are found and contacted directly to answer web queries
 - People and their networks are indexed and search engine has to find the most relevant people to send the queries/questions to
- Search using Social Networks (SSN)
 - The basic intuition behind SSN is the findings that state that a person's interest are very similar to her friends
- Commercial Search Engines
 - Google and Bing integrate users 'like's or '+1's into the search results
 - Only show the likes and +1s and the actual ranking is not affected

Approach

- User Relatedness
 - $urf(u, u')$
 - Measures the relevance/relatedness between to users (nodes) in a social network (graph)
- User Weight
 - $uwf(u)$
 - Captures the overall (global) importance of each user in the network
- User Action
 - $uaf(u, o)$
 - Quantifies the importance of each object to each user not affected
 - Context/application dependent
 - YouTube videos:
 - $\{\text{own(publish)} : 1; \text{favorite} : 0.9; \text{like} : 0.7; \text{comment} : 0.4\}$

Social Relevance

$$socRel(u, q) = \sum_{v_j \in V_u} wrf(u, v_j) \times uaf(v_j, o) \times uwf(v_j)$$

Social-Textual Relevance

$$stRel(u, q) = \alpha \times socRel(u, q) + (1 - \alpha) \times texRel(u, q)$$

$$= \alpha \times \sum_{v_j \in V_u} wrf(u, v_j) \times uaf(v_j, o) \times uwf(v_j) + (1 - \alpha) \times \sum_{t_j \in T} t_j \times idf(t_j)$$

Experiments

1. Impact of λ on nDCG
2. Impact of ‘threshold’ on nDCG
3. Impact of α on nDCG