Real-time 3D Face Tracking and Modeling From a Webcam

CT

√iWatch

Jongmoo Choi, Yann Dumortier, Sang-II Choi, Muhammad Bilal Ahmad, Gerard Medioni

Integrated Media Systems Center University of Southern California

Introduction

- Input: video from webcam
- Output: 3D (6dof) pose of face

- Why difficult?
 - (self-)occlusion, outliers, expressions, ...
- Key idea
 - Build 3D face model and use it for tracking

Adding new keypoints

• To handle wide pose angles

iCampus

Re-acquisition

- Reacquisition after tracking loss
- Using stored descriptors (SURF)

Proposed Method

Initial 3D modeling

- ASM fit to 2D facial landmarks \bullet
- Warp 3D generic face model lacksquare

3D pose from tracked keypoints

Initialization

Experiments

• From videos and live input

1 1

rotation (pitch)

1

-

W W W

• From videos and live input

6

3D pose using RANSAC + PnP method

2D tracking followed by 3D computation (RANSAC + PnP) ullet

Conclusion and Future Work

- Real-time, accurate, robust 3D face tracking
- Pros and cons
 - (+)

Robust and fast, real-time (>15Hz) Range (X: ±70°, Y: ±90°, Z: 360°) Distance (~1.8m, 30 pixels between eyes) Robust to facial expression changes (-)

Computation (GPU-SURF, rendering, ...)

