TAPAS: Trustworthy Privacy-Aware Participatory Sensing

CT

√iWatch

Leyla Kazemi and Cyrus Shahabi

Integrated Media Systems Center University of Southern California

Introduction

□ 5.3 billion mobile subscriptions by the end of 2010

Technology advances on mobile phones

□ Network bandwidth improvements

Participatory Sensing (PS): a new mechanism for efficient and scalable data collection

Privacy: Participants may not want to associate themselves with the collected data

Trust: Data contributed by participants cannot always be trusted

□ Privacy

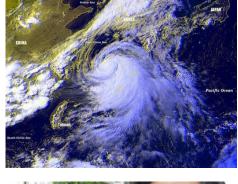
Related Work

- Participatory sensing
 - ✓ Focuses on the data contribution rather than the coordination phase
 - Focuses on opportunistic data collection \checkmark
 - ✓ Trust is not an issue
- □ Trust

□ Participatory sensing : Incorporating a trusted hardware/software (e.g., TPM) into the mobile device

- ✓ Not designed for analog attack
- □ Reputation Systems in P2P networks
 - \checkmark Privacy is not usually an issue

Spatial dimension is not considered


Application/Project/Research

Collect image and video, spontaneous news report

□ Monitor traffic, health condition, moving patterns

□ Weather, temperature, hurricane and fire watch

Detecting chemical/hazardous materials, pollution

Problem Definition Problem Possible attacks □ How to privately assign to the participants □ Malicious servers their closeby data collection points? □ Location-based attack

TAPAS Framework

- □ Filter
 - □ Server-side
- ✓ Bounded Anonymity Level (BAL)

✓ Limited Pruning Technique (LPT)

✓ Heurisic-based Bounded Anomity Level (HBAL)

P₀

iCampus

□ Prune the set of points that cannot be in the *RkNN* of the users in a given

Approach/Experiments

- ASR
- **Refinement**

User-side

Exploit local knowledge to refine the result

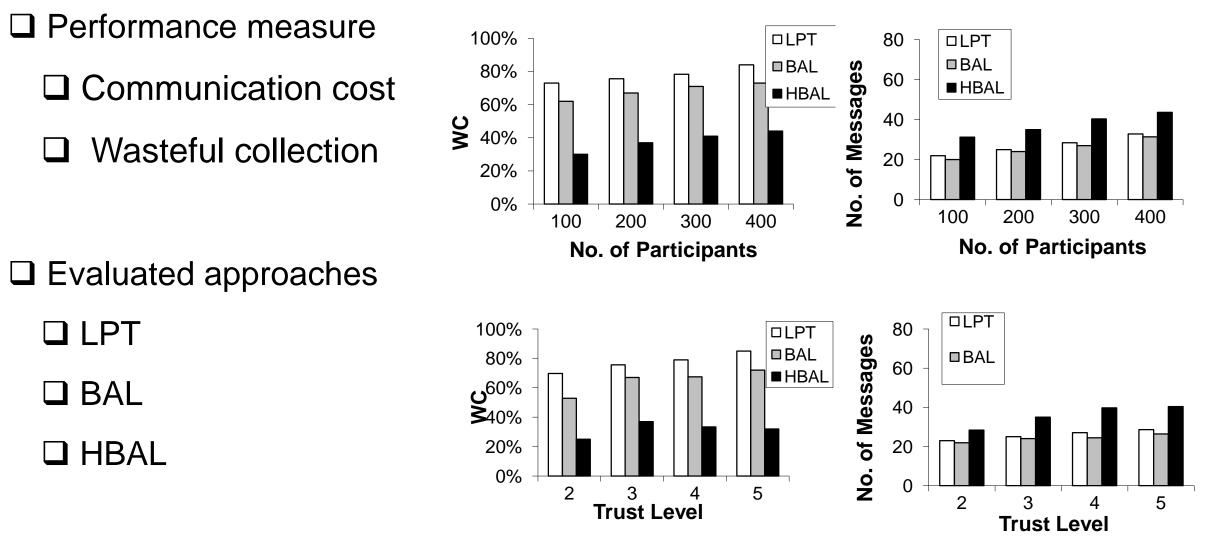
Experiments

Approximate answer

P

Local refinement

- Methodology
 - ✓ Simulation-based experiments
 - ✓ Photo collection from 500 locations in LA area


Finding *RkNN* set of all

ASRs

✓ Random generation of 400 users' locations

□ Performance measure

- Communication cost
- □ Wasteful collection

- \checkmark Protection from location-based attacks
- \checkmark Verification of the validity of the result

Challenges

□ How to verify the validity of the data collected by anonymous user?

Idea

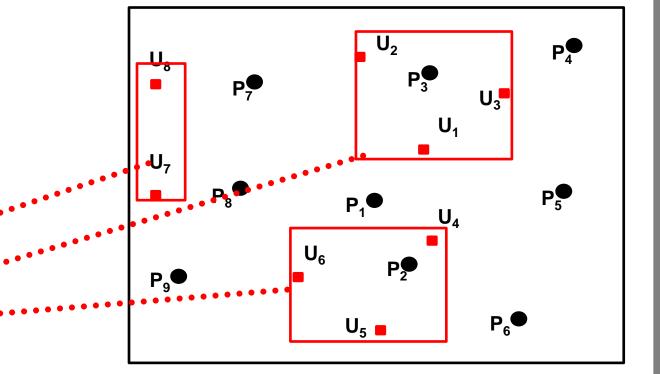
□ Privacy: Following an existing approach

□ Trust: Each point assigned to *k* closest users

□ Majority of users generate correct data

Formal Problem

□ Finding the private k reverse nearest neighbor (PRkNN) of every user


Given a set of anonymizing spatial regions (ASR)

✓ Identifying the query issuer by associating query to the query location

□ Malicious User

□ Intentionally collect wrong data

Conclusion and Future Work

Conclusion

□ Formalized the interplay of privacy and trust in participatory sensing as a private reverse k nearest neighbor (*PRkNN*) problem

□ Proposed *TAPAS*, a trustworthy privacy-aware framework that included three various solutions to the *PRkNN* problem

Future work

□ Extend the proposed approaches to more cost-efficient and energy-efficient solutions

□ Incorporating the reputation of the users in to our trust model

