Intelligent Transportation

Traffic Data Management

Ugur Demiryurek
Assocciate Director, IMSC
Viterbi School of Engineering
University of Southern California
Los Angeles, CA 900890781
demiryur@usc.edu
Intelligent Transportation

PROBLEM

• Traffic congestion is a $87.2 billion annual drain on the U.S. economy\(^1\):
 • 4.2 billion lost hours (one work week for every traveler)\(^1\)
 • 2.8 billion gallons of wasted fuel (three weeks worth of gas for every traveler)\(^1\)

\(^1\) Texas Transportation Institute Urban Mobility Report, 2007 data
Intelligent Transportation

PROBLEM

• Traffic congestion is a **$87.2 billion annual drain** on the U.S. economy\(^1\):
 • 4.2 billion lost hours (one work week for every traveler)\(^1\)
 • 2.8 billion gallons of wasted fuel (three weeks worth of gas for every traveler)\(^1\)

\(^1\)Texas Transportation Institute Urban Mobility Report, 2007 data

GOAL

• To improve the performance of the surface transportation network through:
 • Capturing real-time data from infrastructure and vehicles
 • Developing data-driven solutions to improve mobility by leveraging optimization opportunities (e.g., path planning for commuter groups)
Intelligent Transportation

Facilitating an infrastructure for acquiring, processing, storing and querying real-time and historical transportation datasets
TransDec: Data-Driven Decision Making in Transportation Systems
Outline

• TransDec
• Accomplishments
• Projects
 • Stream Data Processing
 • Time-dependent Route Planning
 • Inferring Traffic from Video Feeds
• Future Plans
TransDec Team

• Government
 • LA-MTA: Los Angeles County Metropolitan Transportation Authority
 • RIITS: Regional Integrated Intelligent Transportation System

• USC
 • Annenberg Innovation Lab
 • Price School of Public Policy
 • Integrated Media Systems Center

• Industry
 • Microsoft
 • Intel
TransDec

Input Traffic Data
Data Processing
Storage
Query Retrieval & Visualization

46 MB/min
26 MB/min

Microsoft SQL Azure
Oracle Database

Big Data!

Highway
Traffic Monitoring Videos
Real-time Flow Data Extraction
CalTrans
Viewmont

Microsoft StreamInsight
15 TB/Year
26 MB/min

USC Viterbi
School of Engineering

Integrated Media Systems Center
Outline

• TransDec
• Accomplishments
• Projects
 • Stream Data Processing
 • Time-dependent Route Planning
 • Inferring Traffic from Video Feeds
• Future Plans
Accomplishments

• Unrivaled research
 • $1.8+ million funding in last 2 years

• Advanced development
 • Largest repository of SC traffic data (15+TB)
 • End-to-End system

• Intellectual property
 • Algorithms & Papers (Best paper award)
 • Filed and provisional two patents

• Technology Transfer
 • Incubator, Amplify.la
Outline

• TransDec

• Accomplishments

• Projects
 • Stream Data Processing
 • Time-dependent Route Planning
 • Inferring Traffic from Video Feeds

• Future Plans
Stream Data Processing

- **Traffic Data Lifecycle: Loop Detectors**
 - Loop Detector: most commonly used traffic sensors
 - The data is collected in Detector Cabinet and relayed to the service provider.
 - Provide two data fields: volume (count) and occupancy (% time a vehicle is over the sensor)
Stream Data Processing

A Data Management Problem

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Sample XML</th>
<th>Cycle</th>
<th>Hourly (in KB)</th>
<th>Daily (in KB)</th>
<th>Annual (in KB)</th>
<th>3 Years (in KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bus_mta_inv2.xml</td>
<td>23</td>
<td>86400</td>
<td>0.96</td>
<td>23.00</td>
<td>8,395.00</td>
<td>25,185.00</td>
</tr>
<tr>
<td>bus_mta_rt2.xml</td>
<td>1065</td>
<td>120</td>
<td>532.50</td>
<td>31,950.00</td>
<td>766,800.00</td>
<td>279,882,000.00</td>
</tr>
<tr>
<td>cctv_inv.xml</td>
<td>57</td>
<td>86400</td>
<td>0.04</td>
<td>2.38</td>
<td>57.00</td>
<td>20,805.00</td>
</tr>
<tr>
<td>cms_inv.xml</td>
<td>52</td>
<td>86400</td>
<td>0.04</td>
<td>2.17</td>
<td>52.00</td>
<td>18,980.00</td>
</tr>
<tr>
<td>cms_rt.xml</td>
<td>48</td>
<td>75</td>
<td>38.40</td>
<td>2,304.00</td>
<td>55,296.00</td>
<td>20,183,040.00</td>
</tr>
<tr>
<td>event_d7.xml</td>
<td>11</td>
<td>75</td>
<td>8.80</td>
<td>528.00</td>
<td>12,672.00</td>
<td>4,625,280.00</td>
</tr>
<tr>
<td>rail_mta_inv.xml</td>
<td>1</td>
<td>86400</td>
<td>0.00</td>
<td>0.04</td>
<td>1.00</td>
<td>365.00</td>
</tr>
<tr>
<td>rail_rt.xml</td>
<td>8</td>
<td>60</td>
<td>8.00</td>
<td>480.00</td>
<td>11,520.00</td>
<td>4,204,800.00</td>
</tr>
<tr>
<td>rms_inv.xml</td>
<td>865</td>
<td>86400</td>
<td>0.60</td>
<td>36.04</td>
<td>865.00</td>
<td>315,725.00</td>
</tr>
<tr>
<td>rms_rt.xml</td>
<td>1236</td>
<td>75</td>
<td>988.80</td>
<td>59,328.00</td>
<td>1,423,872.00</td>
<td>519,713,280.00</td>
</tr>
<tr>
<td>signal_inv.xml</td>
<td>2095</td>
<td>86400</td>
<td>1.45</td>
<td>87.29</td>
<td>2,095.00</td>
<td>764,675.00</td>
</tr>
<tr>
<td>signal_rt.xml</td>
<td>2636</td>
<td>45</td>
<td>3,514.67</td>
<td>210,880.00</td>
<td>5,061,120.00</td>
<td>1,847,308,800.00</td>
</tr>
<tr>
<td>tt_d7_inv.xml</td>
<td>746</td>
<td>86400</td>
<td>0.52</td>
<td>31.08</td>
<td>746.00</td>
<td>272,290.00</td>
</tr>
<tr>
<td>tt_d7_rt.xml</td>
<td>152</td>
<td>60</td>
<td>152.00</td>
<td>9,120.00</td>
<td>218,880.00</td>
<td>79,891,200.00</td>
</tr>
<tr>
<td>vds_art_d7_inv.xml</td>
<td>115</td>
<td>86400</td>
<td>0.08</td>
<td>4.79</td>
<td>115.00</td>
<td>41,972.00</td>
</tr>
<tr>
<td>vds_art_d7_rt.xml</td>
<td>45</td>
<td>60</td>
<td>45.00</td>
<td>2,700.00</td>
<td>64,800.00</td>
<td>23,652,000.00</td>
</tr>
<tr>
<td>vds_art_ladot_inv.xml</td>
<td>2538</td>
<td>86400</td>
<td>1.76</td>
<td>105.75</td>
<td>2,538.00</td>
<td>926,370.00</td>
</tr>
<tr>
<td>vds_art_ladot_rt.xml</td>
<td>969</td>
<td>60</td>
<td>969.00</td>
<td>58,140.00</td>
<td>1,395,360.00</td>
<td>509,306,400.00</td>
</tr>
<tr>
<td>vds_fr_d7_inv.xml</td>
<td>957</td>
<td>86400</td>
<td>0.66</td>
<td>39.88</td>
<td>957.00</td>
<td>349,305.00</td>
</tr>
<tr>
<td>vds_fr_d7_rt.xml</td>
<td>361</td>
<td>30</td>
<td>722.00</td>
<td>43,320.00</td>
<td>1,039,680.00</td>
<td>379,483,200.00</td>
</tr>
<tr>
<td>Total KB from XML data</td>
<td>13980</td>
<td>864660</td>
<td>6,985.28</td>
<td>230,608.00</td>
<td>10,057,449.00</td>
<td>3,670,968,885.00</td>
</tr>
</tbody>
</table>

Continuous

Large

Heterogeneous (loop detector, gps, events)
Stream Data Processing

- **Microsoft StreamInsight**
 - Efficient retrieval of high-rate streaming data
 - On the fly processing and analysis
Outline

• TransDec
• Accomplishments

• Projects
 • Stream Data Processing
 • Time-dependent Route Planning
 • Inferring Traffic from Video Feeds

• Future Plans
Time-dependent Route Planning

- Traffic patterns varies based on the time of the day, day of the week and season
Time-dependent Route Planning

• Existing FP Techniques
 • Based on the **constant** edge weights for each edge

• In Real-world
 • The weight of an edge is a function of time, i.e., **time-dependent**
 • Arrival-time to an edge determines the travel-time on that edge

8:30 AM 5:00 PM
Time-dependent Route Planning

Baseline Offerings

• Constant travel-time
• Current traffic conditions

Unused Variables

• Historical traffic averages
• Time of day
• Day of week
• Season of year
• Holidays or events
Time-dependent Route Planning

ClearPath

- Technology Transfer for commercialization

- Moving Forward Collaboration with courier companies
Time-dependent Route Planning

FILED UNDER Cellphones, Mobile Software

Apple confirms it's working on a traffic service, moving away from Google Maps?

Apple is now collecting anonymous traffic data to build a crowd-sourced traffic database with the goal of providing iPhone users an improved traffic service in the next couple of years.

Ford Motor Company Expands Collaboration with INRIX on Traffic and Routing

Global Partnership Enhances Ford SYNC and Powers Next-Generation Navigation Systems on All Ford, Lincoln and Mercury Vehicles

NAVTEQ Launches Enhanced Traffic Patterns™

TomTom Provides Historical Traffic Data to City of Zürich

Press Release: TomTom – Mon, Oct 17, 2011 8:00 AM EDT
Outline

- TransDec
- Accomplishments
- Projects
 - Stream Data Processing
 - Time-dependent Route Planning
 - Inferring Traffic from Video Feeds
- Future Plans
Inferring Traffic from Video Feeds

• Today technology: Inductive loop detectors

• Major drawbacks
 – Expensive to install and maintain
 – Traffic must be interrupted for installation and repair
 – Can not detect slow or stationary vehicle
Inferring Traffic from Video Feeds

• Infer traffic flow using Intel Viewmont co-processor and its SDK
• Compare traffic flow with loop detector data
TransDec

- Input Traffic Data
- Data Processing
- Storage
- Query Retrieval & Visualization

- 46 MB/min
- 15 TB/Year

- Traffic Monitoring Videos
- Real-time Flow Data Extraction

- CalTrans
- Viewmont

Microsoft SQL Azure
Oracle Database 11g

RIITS
Los Angeles County

USC Viterbi
School of Engineering
OUTLINE

• TransDec
• Accomplishments
• Projects
 • Stream Data Processing
 • Time-dependent Route Planning
 • Inferring Traffic from Video Feeds
• Future Plans
Future Plans

• Develop spatio-temporal analytical and data mining techniques to discover

 Tipping-points Butterfly Effects Black Swans
Questions?

Ugur Demiryurek
demiryur@usc.edu