



# *iWatch: BIG Data Management and Analytics for Intelligent Surveillance*

Farnoush Banaei-Kashani, Ph.D. Research Associate, Computer Science Department Associate Director, IMSC Viterbi School of Engineering University of Southern California Los Angeles, CA 90089-0781 <u>banaeika@usc.edu</u>





### Outline



- An Overview of the iWatch Project
- Vertical Cuts: Application-Specific Prototypes
  - iWatch for Safety and Security (i4S)
  - iWatch for Health (i4H)
  - iWatch for Energy (i4E)







# **Project Objectives**

- A Multi-purpose System for Intelligent *Geoimmersive Surveillance*
- An End-to-End System!
- A Research Showcase
- A Technology Showcase





### **GeoImmersive Surveillance**



- Sense
  - *Multi-modal* sensing
  - Deep sensing
  - Active sensing

- Detect Events
  - Forensic analysis
  - *Real-time monitoring*
  - Prediction of potential expected (and unexpected!) events

#### • Act

- Visualization
- Recommendation
- Actuation







### **Research Showcase**





# Technology Showcase





### Project Timeline

#### January 2011

| Applications        | Sponsors | <b>Technologies</b> | Funding | Team                                      |
|---------------------|----------|---------------------|---------|-------------------------------------------|
| Safety and Security | IMSC     | Oracle 11g          | ~20K    | IMSC Researchers (4)<br>IMSC Students (2) |







### Project Timeline (cont'd)

#### January 2012

| Applications                                   | Sponsors                                                                                                                      | <b>Technologies</b>                        | Funding | Team                                                                                                                                                                                                |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safety and Security<br>Public Health<br>Energy | IMSC<br>NIJ<br>NGC<br>CREATE (DHS)<br>USC (DPS)<br>CIA?<br>NGA?<br>CTSI?<br>NIH?<br>LA County?<br>Oracle?<br>CiSoft (Chevron) | Oracle 11g<br>IBM<br>Microsoft<br>Qualcomm | 1.2M+   | USC Public Safety<br>USC Doctors (3)<br>CHLA Doctors (1)<br>Reservoir Engineers<br>Sponsors' PMs<br>IMSC Researchers (4)<br>IMSC Postdocs (4)<br>IMSC Students (15)<br>Industry Partners<br>USC AMI |





# Outline



• An Overview of the iWatch Project

- Vertical Cuts: Application-Specific Prototypes
  - iWatch for Safety and Security (i4S)
  - iWatch for Health (i4H)
  - iWatch for Energy (i4E)





### iWatch for Safety and Security (i4S)



- Purpose: Forensic and Real-time Criminal Activity Detection from Multi-Source Multi-Modal Data
- **Sponsors:** NIJ, NGC, CREATE, DPS
- Team:
  - Law Enforcement and Security/Intelligence Experts: Mark Greene (NIJ), Ed Tse (NGC), Carol Hayes (DPS)
  - Risk Analysis: Isaac Maya (CREATE)
  - Incident Detection from Video: Ram Nevatia (Tracking), Gerard Medioni (Face detection)
  - Geo-keyword Incident Indexing: Cyrus Shahabi
  - Spatiotemporal Event Detection: Farnoush Banaei-Kashani
  - Mobile Video Search: Seon Ho Kim





# Approach



#### • Motivation:

Multi-modal integration enables more effective surveillance systems for criminal activity detection

#### • <u>Challenge</u>:

Data overload in detecting events in large environments over long time intervals

#### • <u>Proposed Approach</u>:

Utilize state-of-the-art content analysis techniques to extract *incidents* from input data streams, while integrating the incidents in the **spatiotemporal domain** (rather than content domain) to detect *events* 





# Approach (cont'd)

#### • <u>Advantage</u>:

Allows for event detection in large spatial and temporal scales









### Last Year's Demonstration

- Mode: Forensic Analysis
- Input: Video feed from 25 PTZ cameras













### i4S Prototype: Research Showcase



### i4S Prototype: Technology Showcase





### Sample Demonstration

#### Server-side User Interface



#### **Mobile Client**



#### Search for "Geofence Demo" on Youtube





# Outline



- An Overview of the iWatch Project
- Vertical Cuts: Application-Specific Prototypes

   iWatch for Safety and Security (i4S)
  - iWatch for Health (i4H)
  - iWatch for Energy (i4E)







# iWatch for Health (i4H)

- Special-Purpose Prototypes
  - Prototype I: Contact Investigation
  - Prototype II: Understanding Geography of Diabetes
  - Prototype III: Point-of-Care Mobility Monitoring





### i4H-Prototype I: Contact Investigation



- Sponsor: NIH?
- Team:
  - Contact Investigation: Dr. Brenda Jones (TB), Dr. Pia Pannaraj (Flu)
  - Tracking and Face Detection: Gerard Medioni
  - Spatiotemporal Contact Analysis: Farnoush Banaei-Kashani, Cyrus Shahabi















# Step II: Reachability Analysis



A graph G which is:

- Large scale (Huge number of edges and vertices)
- Temporal (Edges are added and deleted over time)
- Geospatial (Nodes are moving in space)



Within a time interval [a,b], find:

- Whether *u* is reachable from *v*?
- The individuals reachable from *v*?
- The individuals that can reach v?







### i4H-Prototype I: System Architecture



### i4H-Prototype I: Research Showcase



### i4H-Prototype I: Technology Showcase



### i4H-Prototype II: Understanding Geography of Diabetes



- **Purpose:** Spatial Analysis and Mining of Diabetes Patient Data to Understand Spatial Causative pathways, Processes, and Patterns
- **Sponsor:** Verizon?, Oracle?
- Team:
  - Diabetes: Dr. Andy Lee
  - Use-case and Market Analysis: Nathalie Gosset (AMI)
  - Body Area Sensor Network: Murali Annavaram
  - Spatial Data Analysis and Mining: Farnoush Banaei-Kashani, Cyrus Shahabi















# Analytics



- Categories:
  - Patient Analytics vs. Expert Analytics
  - Trajectory Analytics vs. Spatial Analytics
  - Individual Analytics vs. Collective Analytics
- Exemplary Analytics:
  - Spatial outlier detection to distinguish "good signatures"
  - Spatial co-location rules to identify causative processes





### i4H-Prototype II: System Architecture



### i4H-Prototype II: Research Showcase



### i4H-Prototype II: Technology Showcase



### i4H-Prototype III: Point-of-Care Mobility Monitoring



- **Purpose:** Real-time Mobility Monitoring for 1) Rehabilitation of Stroke-induced Mobility Limitations, and 2) Optimization of Pharmacologic Interventions for Parkinson's Disease
- Sponsor: CTSI?, Oracle?
- Team:
  - Rehabilitation: Dr. Carolee Winstein et al.
  - Use-case and Market Analysis: Cesar Blanco (AMI)
  - Video Data Analysis: Gerard Medioni
  - Sensor Data Analytics: Farnoush Banaei-Kashani, Cyrus Shahabi









### Vision









# Outline



- An Overview of the iWatch Project
- Vertical Cuts: Application-Specific Prototypes
  - iWatch for Safety and Security (i4S)
  - iWatch for Health (i4H)
  - iWatch for Energy (i4E)







- **Purpose:** On-the-Fly Decision-Making based on Real-Time Stream Data to Enahnced Oil Recovery
- **Sponsor:** Chevron/CiSoft?
- Team:
  - Stream Data Analytics: Farnoush Banaei-Kashani, Cyrus Shahabi









# Vision



- 1. With GPS data from all moving objects in the field (vehicles, field workers, and perhaps robots that are monitoring and operating the field, etc.)
  - <u>A Safety Application:</u> Fire Announcement
  - Work order optimization application
  - <u>A Security application:</u> GeoFence
- 2. With sensor data from all wells in the field (e.g., production/injection rate detectors, bottom hole pressure and temperature readers, smoke and hazard detectors, vibration detectors)
  - Waterflood monitoring and optimization (WMO) application
  - <u>A Safety and incident detection application</u>: Fire Detection
- 3. With sensor data from the equipment in the field (RFID readers, vibration detectors, status sensors)
  - Inventory application
  - <u>A Facility management application as well as safety application:</u> Failure Detection







# **A** & **D**



