
Accurate Discovery of Valid Convoys from Moving Object Trajectories

Hyunjin Yoon
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

hjy@usc.edu

Cyrus Shahabi
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

shahabi@usc.edu

Abstract—Given a set of moving object trajectories, it is of
interest to find a group of objects, called a convoy, that are spa-
tially density-connected for a certain duration of time. However,
existing convoy discovery algorithms have a critical problem of
accuracy; they tend to both miss larger convoys and retrieve
invalid ones where the density-connectivity among the objects
is not completely satisfied. We propose a new valid convoy
discovery algorithm, called VCoDA, for the accurate discovery
of valid convoys from moving object trajectories. Specifically,
VCoDA first retrieves all partially connected convoys while
guaranteeing no false dismissal of any valid convoys and
then validates their density-connectivity to eventually obtain
a complete set of valid convoys. Our extensive experiments on
three real-world datasets demonstrate the effectiveness of our
technique; VCoDA improves the precision by a factor of 3
on average and the recall by up to 2 orders of magnitude as
compared to an existing method.

I. INTRODUCTION

A moving object trajectory is a series of locations sam-
pled at discrete instances of time. Various types of trajectory
data tracking the movement of vehicles, hurricanes, or
animals have been acquired using location-aware sensors
and exploited to obtain insights from the intrinsic movement
traits and behaviors presented in the data [1].

Given a set of moving object trajectories, it is of interest to
find a group of objects that moved together for a certain du-
ration of time [2], [3], [4], [5]. Such groups of objects close
both in time and space dimensions are particularly useful
to abstract the accumulated mobilities common in groups.
Various group patterns have been defined over moving object
trajectories. A (long duration) flock [6], [2] is defined by at
least m moving objects staying together within a circular
region of radius ε during at least k consecutive timestamps.
Although the flock pattern has been most popularly exploited
in the past, the shape and the size of flock snapshot is limited
to a disk of a fixed size bound ε, hence it cannot cover larger
flocks where objects are distributed over a wider area larger
than the given disk size. To avoid this rigid restriction, a
variant of flock called a convoy [3] is recently proposed
based on the notion of density-connectivity. A convoy is
defined as a group of at least m moving objects that are
density-connected w.r.t. the density constraints during at
least k consecutive timestamps. Unlike flock, the shape and

the size of convoy snapshot can be arbitrary.
Jeung et al. first defined the convoy query in [7] and

proposed several algorithms to discover all convoys from
a given trajectory dataset [7], [3]. Their solution adopts the
well-known moving cluster algorithm [4] in that a density-
based clustering (e.g., DBSCAN [8]) is first performed on
the moving objects at each timestamp to find snapshot
density-connected clusters of arbitrary shapes and then the
intersection of a sequence of at least k such snapshot clusters
appearing during consecutive timestamps is detected as a
convoy if they share at least m objects in common.

c3

c4

c1a
c2a

t1

t2

t3

t4

Time

c1b
c2b

o1 o2 o4 o5 o6o3

(a) Missed convoy

t1

t2

t3

t4

Time

c1

c2

c3

o1 o2 o3 o6
c4

o4 o5

(b) Invalid convoy

Figure 1. Accuracy problems of current convoy discovery algorithms

Our key observation is that current convoy discovery algo-
rithms have a critical problem of accuracy in terms of both
precision and recall; they tend to miss larger convoys and
retrieve invalid ones where the density-connectivity among
the objects is not completely satisfied. First consider the six
moving objects o1,o2,. . .,o6 in Figure 1(a). Suppose the min-
imum number of objects and the lifetime of convoys to be
mined is set to m=3 and k=2. We can clearly see that the six
objects start moving in two groups from t1 and then travel all
together from t3, which results in three natural group pat-
terns: P1=〈{o1,o2,o3},[t1,t4]〉, P2=〈{o4,o5,o6},[t1,t4]〉, and
P3=〈{o1,o2,. . .,o6},[t3, t4]〉. However, current convoy dis-
covery algorithms are unable to detect the larger convoy P3

of all six objects. Similarly, the current approach will return
only one convoy of three objects P4=〈{o1,o2,o3},[t1, t4]〉,
not the larger group of five P5=〈{o1,o2,. . .,o5}, [t1, t2]〉, in
Figure 1(b). Another problem is that the returned convoy P4

is just a partially connected group since the three (black)
objects are not density-connected at t1, i.e., they are unable
to form a cluster by themselves without the other two (white)

2009 IEEE International Conference on Data Mining Workshops

978-0-7695-3902-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDMW.2009.71

564

2009 IEEE International Conference on Data Mining Workshops

978-0-7695-3902-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDMW.2009.71

636

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

objects. Hence, P4 should have had a shorter lifetime [t2, t4]
to be indeed a correct valid convoy.

In this paper, we propose a new algorithm for the ac-
curate discovery of valid convoys from a set of moving
object trajectories, named VCoDA (Valid Convoy Discovery
Algorithm). Our solution consists of two phases; first a set of
all partially connected convoys is discovered from a given set
of moving objects and then the density-connectivity of each
partially connected convoys is validated to finally obtain a
complete set of valid convoys. The first phase of VCoDA
extends the current convoy algorithm CMC [7] in that,
scanning through the entire span of time, a set of density-
connected snapshot clusters are incrementally updated by
consecutive ones with sufficient objects in common under
four operations (i.e., insert, extend, delete, and return). This
approach is further extended in the second phase such
that the density-connectivity of each partially connected
convoy is incrementally verified at every timestamp either
by immediate, single re-clustering, or recursive validation.
Our experiments on three real-world datasets demonstrate
the effectiveness of our techniques; VCoDA improves the
precision by a factor of 3 on average and the recall by up to
2 orders of magnitude as compared to the existing convoy
algorithm.

The remainder of this paper is organized as follows.
Section II introduces some basic definitions and the problem
considered in this paper. Section III proposes our solution for
the valid convoy discovery. Section IV presents the results
of experimental evaluation. The related work is discussed in
Section V, followed by conclusion in Section VI.

II. PRELIMINARIES

The trajectory of a moving object is a finite sequence of
sampled locations during a closed time interval [t1, tn] and
defined as a sequence of pairs, 〈(p1, t1),(p2, t2),. . .,(pn, tn)〉,
where pi∈�d (d∈{2,3}) is a two- or three-dimensional
vector1 representing the geo-spatial position sampled at
a timestamp ti∈�+ [9]. Figure 2 shows the trajectories
of five moving objects as solid directed polylines in the
spatio-temporal space formed by the spatial plane of X and
Y axes and the time dimension of Z axis. For simplicity, we
use the notation o(ti) to denote the snapshot position pi of
a moving object o sampled at a timestamp ti.

We now adopt the notions of density-based clustering
originally proposed for the algorithm DBSCAN [8] specifi-
cally for the snapshot locations of moving objects. Given a
set P={o1(t),. . .,oN (t)} of snapshot locations of N moving
objects at a timestamp t and a distance threshold ε, the ε-
neighborhood Nε(op(t)) of a location op(t)∈P is defined
as Nε(op(t))={oq(t)∈P |D(op(t), oq(t))≤ε}, where D(·) is
the Euclidean distance. A snapshot location op(t) is directly

1For the purpose of proper visualization, we assume two-dimensional
location vectors throughout this paper.

t1

t2

t3

t4

Time

ct2

ct3

o1 o2 o3

ct4

o4 o5

snapshot
cluster ct1 X

Y -neighborhood
of o2(t1)

Figure 2. Valid convoys from trajectories

density-reachable from a location oq(t) w.r.t. a given dis-
tance threshold ε and an integer m if op(t)∈Nε(oq(t)) and
|Nε(oq(t))|≥m. A location op(t) is density-reachable from
a location oq(t) w.r.t. a given distance threshold ε and an
integer m if there is a chain of locations o1(t),. . .,on(t)∈P
s.t. o1(t)=oq(t), on(t)=op(t), and oi+1(t) is directly density-
reachable from oi(t) w.r.t. ε and m for 1≤i<n. A location
op(t)∈P is density-connected to a location oq(t)∈P w.r.t. a
given distance threshold ε and an integer m if there is a loca-
tion or(t)∈P s.t. both op(t) and oq(t) are density-reachable
from or(t) w.r.t. ε and m. For example, in Figure 2, the
snapshot location o1(t1) of an object o1 at a timestamp t1
is not directly density-reachable from the snapshot location
o2(t1) of an object o2, but density-reachable due to a chain
of locations o2(t1), o5(t1), o4(t1), o1(t1).

Definition 1. Given a set of moving objects O, a distance
threshold ε, and an integer m, a snapshot cluster ct at
a timestamp t is a non-empty subset of objects O′ ⊆ O
satisfying the following conditions:
1) Connectivity: ∀op, oq ∈ O′, a location op(t) is density-
connected to a location oq(t) w.r.t. ε and m.
2) (Spatial) maximality: ∀op, oq∈O′, if oq∈O′ and a location
op(t) is density-reachable from a location oq(t) w.r.t. ε and
m, then also op∈O′.
3) Sufficient objects: |O′| ≥ m.

A snapshot cluster is a group of density-connected objects
with arbitrary shape and size yet constrained to a single
timestamp. Figure 2 shows four snapshot clusters discovered
at each timestamp with the parameter m=3. Such snapshot
clusters are spatially maximal such that no two snapshot
clusters at a timestamp can overlap in their objects. We
extend this notion of density-based spatial clusters to that of
density-based spatio-temporal clusters for moving objects.

Definition 2. Given a set of moving objects O, a distance
threshold ε, an integer m, and a lifetime integer k, a valid
convoy is a non-empty subset of objects O′⊆O during a
time interval [ta,tb], satisfying the following conditions:
1) Connectivity: ∀op, oq ∈ O′, a snapshot location op(t) is
density-connected to a snapshot location oq(t) w.r.t. ε and
m, which holds for every timestamps t, ta≤t≤tb.
2) Spatial maximality: ∀op, oq ∈ O′, if oq∈O′ and op(t) is
density-reachable from oq(t) for all ta≤t≤tb, then op∈O′

565637

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

3) Temporal maximality: ¬∀op, oq∈O′, op(ta−1) is density
connected to oq(ta−1) at ta−1 (ta>1) and ¬∀or, os∈O′,
or(tb+1) is density-connected to os(tb+1) at tb+1 (tb<n).
4) Sufficient objects: |O′| ≥ m.
5) Sufficient lifetime: (tb − ta + 1) ≥ k.

A valid convoy is therefore a group of density-connected
objects with arbitrary shape and extent during a sufficient
consecutive time interval. Such valid convoys are spatially
and temporally maximal such that no two valid convoys with
the same time interval can overlap in their objects and no
two valid convoys with the same set of moving objects can
overlap in time. We use the notation v=〈{o1,. . .,on},[ta,tb]〉
to denote a valid convoy v consisting of moving objects
o1,. . .,on that are thoroughly density-connected during a
consecutive time interval [ta, tb]. A valid convoy 〈{o1,o2,
o3},[t2, t4]〉 can be found over the five trajectories in Fig-
ure 2, with the parameters m=3 and k=3.

Definition 3. Given a set of moving objects O, a distance
threshold ε, an integer m, a lifetime integer k, and a
sequence of snapshot clusters cta

,cta+1,. . .,ctb
during a con-

secutive time interval [ta, tb], a partially density-connected
convoy (or simply partially connected convoy) is defined as
a non-empty subset of objects O′ ⊆ O during a time interval
[ta, tb], satisfying following conditions:
1) Spatial maximality: O′ = cta

∩ cta+1 ∩ . . . ∩ ctb
.

2) Temporal maximality: �cta−1, ctb+1, O′ ⊆ cta−1 and O′

⊆ ctb+1

3) Sufficient objects: |O′| ≥ m.
4) Sufficient lifetime: (tb − ta + 1) ≥ k.

In other words, a partially connected convoy is a group of
objects that traverse in a sequence of dense regions during a
consecutive time interval of sufficient lifetime. Although the
objects are within a dense area at each timestamp, they are
not necessarily density-connected by themselves unlike valid
convoys. For example, a partially connected convoy 〈{o1,o2,
o3},[t1, t4]〉 is found over the five moving object trajectories
in Figure 2, with the parameters m=3 and k=3. As can be
seen, the three objects o1,o2,o3 are not density-connected
by themselves at the timestamp t1 without the objects o4

and o5 but are lying in a dense region corresponding to the
snapshot cluster ct1 , which is therefore not a valid convoy
due to the unsatisfied connectivity constraint.

Definition 4. Given two valid (or partially connected) con-
voys v=〈O, [ta, tb]〉 and v′=〈O′, [ta′ , tb′]〉, v is a sub-convoy
of v′, denoted as v=sub-convoy(v′), if either one of the
following conditions is satisfied exclusively:
1) O = O′ and ta′ ≤ ta ≤ tb ≤ tb′ , or
2) O ⊆ O′ and ta′ = ta ≤ tb = tb′ .

Given a set of moving objects O, a distance threshold ε,
an integer m, and an integer k, the convoy discovery problem
is to mine all valid convoys from O, each consisting of at

least m moving objects that are density-connected w.r.t. the
density constraints m and ε during at least k consecutive
timestamps.

III. DISCOVERING VALID CONVOYS

In this section, we present our solution VCoDA for the
valid convoy discovery problem. First, a set of all possible
partially connected convoys is discovered from a given set
of moving object trajectories in Section III-A. Then, the
density-connectivity of each partially connected convoy is
validated to obtain a set of truly valid convoys satisfying all
five constraints in Section III-B.

A. Partially Connected Convoy Discovery

Our approach of finding a partially connected convoy
extends the well-known moving cluster algorithm [4] as in
other convoy discovery algorithms [3]. First, we perform
a density-based clustering DBSCAN [8] on the snapshot
locations of moving objects at each timestamp to identify
the snapshot clusters defined in Definition 1. Figure 3(a)
shows such snapshot clusters discovered at each timestamp
with the parameter m=3. Starting with the set C of snapshot
clusters at the first timestamp, we incrementally update
a set V of current partially connected convoy candidates
scanning throughout the timestamps. The set V is maintained
at each timestamp under four operations defined in Table I:
1) insertion of a snapshot cluster c∈C as a new partially
connected convoy candidate, 2) extension of an existing
partially connected convoy candidate v∈V by a matching
snapshot cluster c∈C, 3) deletion of a sub-convoy v∈V , and
4) return of a maximally extended partially connected convoy
candidate v∈V to an actual partially connected convoy.

Figure 3(b) shows all possible updates of V during a time
interval [t1, t4], with the parameters m=3 and k=2. At t1,
the cluster c1 is inserted to V as a new partially connected
convoy candidate v1 by the first condition of Insert() in
Table I since V is initialized as an empty set. At t2, the
current partially connected convoy candidate v1 is compared
with the snapshot cluster c2, resulting in an extended convoy
candidate consisting of their intersection o1, o2, and o3.
Although matched to the convoy candidate v1, the snapshot
cluster c2 should be also inserted to V as a new partially
connected convoy candidate since it is not fully absorbed
by any of the candidates in V (see the second condition of
Insert() in Table I). At t3, both v1 and v2 are extended by
the cluster c3. At t4, the convoy candidate v1 is extended
by the matching cluster ca

4 . The convoy candidate v2 is also
extended by ca

4 , which however leads to a sub-convoy of
the extended convoy candidate v1. Therefore, this extended
partially connected convoy candidate is deleted from the set
V . In addition, v2 must be returned as a partially connected
convoy satisfying the constrains m=3 and k=2 at the current
timestamp t4 since is not absorbed by any of the snapshot
clusters in C. At last, the snapshot cluster cb

4 is inserted to

566638

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

Table I
FOUR OPERATIONS TO UPDATE V IN THE PARTIALLY CONNECTED CONVOY DISCOVERY

Operation Conditions

Insert(c)
(1) c is not matched: �v ∈ V , |v ∩ c| ≥ m, or
(2) c is matched but not absorbed: ∃v ∈ V , |v ∩ c| ≥ m ∧ c\(v ∩ c) �= ∅ ∧ �v′ ∈ V\{v}, v′=c

Extend(v,c) v and c share enough objects: |v ∩ c| ≥ m
Delete(v) v is a sub-convoy: ∃v′ ∈ V , v = sub-convoy(v′) (by Def. 4)

Return(v)
(1) v is not extended: �c ∈ C, |v ∩ c| ≥ m ∧ v.lifetime ≥ k, or
(2) v is extended but not absorbed: ∃c ∈ C, |v∩c|≥m ∧ v.lifetime≥k ∧ v\(v∩c) �=∅ ∧ �c′ ∈ C\{c}, v=c′

c3

c4a

c1

c2

t1

t2

t3

t4

Time o1 o2 o4 o5o3 o6

c4b

(a) Snapshot clusters

t1

t2

t3

t4

v1 c1
{o1,o2,o3}, [t1,t1]

v1 v1 c2
{o1,o2,o3}, [t1,t2]

v2 c2
{o1,...,o6}, [t2,t2]

v1 v1 c3
{o1,o2,o3}, [t1,t3]

v1 v1 c4
a

{o1,o2,o3}, [t1,t4]
v2 v2 c4

a

{o1,o2,o3}, [t2,t4]
v3 c4

b

{o4,o5,o6}, [t4,t4]

: Insert(c1)

: Extend(v1, c2)

: Extend(v1, c3)

: Extend(v1, c4
a)

: Insert(c2)

: Extend(v2, c3)

: Extend(v2, c4
a), Delete(v2)

: Insert(c4
b)

v2 v2 c3
{o1,...,o6}, [t2,t3]

Vpcc v2
{o1,...,o6}, [t2,t3]

: Return(v2)

(b) Updates of the current partially connected convoy candidates V

Figure 3. Discovery process of partially connected convoys

V as a new partially connected convoy candidate since it is
not matched to any of the convoy candidates.

Algorithm 1 PCCD(moving objects O, ε, m, k)
1: V ← ∅; // set of current partially connected convoys
2: for each timestamp t do
3: Vnext ← ∅; // next set of partially connected convoys
4: C ← DBSCAN(Pt(O), m, ε);
5: for each cluster c ∈ C do // initialize snapshot clusters
6: c.matched ← false; c.absorbed ← false; c.lifetime ← [t,t];
7: for each current convoy candidate v ∈ V do
8: v.extended ← false; v.absorbed ← false;
9: for each cluster c ∈ C do

10: if |v ∩ c| ≥ m then // Extend(v, c)
11: v.extended ← true; c.matched ← true;
12: vext ← 〈v ∩ c, [v.lifetimestart, t]〉;
13: Vnext ← updateVnext(Vnext, vext);
14: if v ⊂ c then v.absorbed ← true;
15: if c ⊂ v then c.absorbed ← true;
16: if not v.extended or not v.absorbed then
17: if v.lifetime ≥ k then Vpcc ← Vpcc ∪ {v} // Return(v) ;
18: for each cluster c ∈ C do
19: if not c.matched or not c.absorbed then
20: Vnext ← updateVnext(Vnext, c); // Insert(c)
21: V ← Vnext;
22: return Vpcc;

Algorithm 1 shows the pseudocode of our partially con-
nected convoy discovery algorithm (PCCD). As an input, it
takes trajectories of moving objects O, a distance threshold
ε, the minimum number of objects m, and the minimum
lifetime k. At each timestamp, the snapshot clusters C
satisfying the density constraints (ε and m) are first obtained
in line 4 and compared with the current partially connected
convoy candidates in V (lines 7 and 9). If a current convoy
candidate v∈V shares at least m objects with a cluster c∈C
(line 10), then v is extended with c into a vext as in line 12.
Now, we call the function updateVnext() to update the set of

next partially connected convoy candidates Vnext with this
vext so as to be used in the next iteration (line 13). Then,
v and c should be compared again if one is absorbed by
the other in lines 14-15. The current convoy candidates in V
that are neither extended nor absorbed by any of clusters in
C and have the lifetime of at least k are returned to the set
Vpcc of actual partially connected convoys in lines 16-17,
which is the output of our PCCD algorithm. Similarly, the
current snapshot clusters in C that are neither matched nor
absorbed by any of the current partially connected convoy
candidates in V are inserted to the next partially connected
convoy candidates Vnext in lines 18-20, to be used in the
next iteration.

Algorithm 2 updateVnext(Vnext, vnew)
1: if ∃v ∈ Vnext s.t. v = vnew then
2: if v.lifetimestart > vnew .lifetimestart then // v is a sub-convoy

of vnew

3: Vnext ← Vnext\ {v}; // Delete(v)
4: Vnext ← Vnext ∪ {vnew};
5: else
6: Vnext ← Vnext ∪ {vnew};
7: return Vnext;

Algorithm 2 shows the pseudocode of the updateVnext
function, where the set Vnext of next partially connected
convoy candidates is updated with a new extended convoy
candidate vnew. If there exists a convoy candidate v in Vnext

s.t. v is a sub-convoy of vnew by Definition 4 (lines 1-2),
then v should be deleted and replaced by vnew in order to
maintain a set of maximal convoy candidates in Vnext as in
lines 3-4. Otherwise, the new convoy candidate vnew can be
safely added in the set Vnext to be used in the next iteration
(line 6).

567639

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

B. Density-Connectivity Validation

The second phase of VCoDA takes as an input each par-
tially connected convoy discovered in the previous section
and obtains a set of truly valid convoys that additionally
satisfy the density-connectivity among the group objects. We
extend our PCCD algorithm to this end; scanning through
each timestamp of a given partially connected convoy, if
a current valid convoy candidate v is extended by either a
smaller or a lager snapshot cluster c with sufficient common
objects, the density-connectivity of the resulting extended
valid convoy candidate vext=v∩c should be validated by
re-clustering the moving objects in vext at every timestamp
of vext.

Algorithm 3 DCVal(vpcc=〈{o1,. . .,om},[ta, tb]〉, ε, m, k)
1: V ← ∅; // set of current valid convoys
2: for each timestamp t of vpcc do
3: Vnext ← ∅; // next set of valid convoys
4: C ← DBSCAN(Pt(vpcc), m, ε);
5: initialize each cluster c∈C, convoy v∈V as in lines 6, 8 of Algo.1;
6: for each pair of (v, c) ∈ V×C s.t. |v ∩ c| ≥ m do
7: vext.validated ← false; vext ← 〈v∩c, [v.lifetimestart, t]〉;
8: if v = c then // immediate validation
9: vext.validated←true; Vnext←updateVnext(Vnext, vext);

10: v.extended ← true; v.absorbed ← true;
11: c.matched ← true; c.absorbed ← true;
12: else if v ⊂ c then // validation by re-clustering
13: Ct ← DBSCAN(Pt(vext), m, ε);
14: if Ct=∅ then vext.validated←true; vext.lifetimeend←t-1;
15: else if |Ct|=1 ∧ vext=Ct then // val. by single re-clustering
16: vext.validated←true;Vnext←updateVnext(Vnext,vext);
17: v.extended←true;v.absorbed←true;c.matched←true;
18: else vext ← vext ∩ Ct;
19: if not vext.validated then // recursive validation
20: VC ← DCVal(vext, ε, m, k);
21: for each validated convoy vc ∈ VC do
22: v.extended ← true; c.matched ← true;
23: if vc.lifetimeend = t then
24: Vnext ← updateVnext(Vnext, vc);
25: else
26: if vc.lifetime ≥ k then Vval ← Vval ∪ {vc};
27: if not v.extended or not v.absorbed then
28: if v.lifetime ≥ k then Vval ← Vval ∪ {v};
29: for each cluster c ∈ C s.t. not c.matched or not c.absorbed do
30: Vnext ← updateVnext(Vnext, c);
31: V ← Vnext;
32: return Vval ← Vval ∪ V ;

Algorithm 3 shows the pseudocode of our density-
connectivity validation of partially connected convoy (DC-
Val). As an input, it takes a partially connected convoy
vpcc (e.g., 〈{o1,. . .,om},[ta, tb]〉), a distance threshold ε, an
integer m for the minimum number of objects, and an integer
k for the minimum lifetime. The algorithm is similar to
PCCD, except that the density-connectivity is verified for
each extended valid convoy candidate vext=v∩c in lines 8-
26. For each matching pair v∈V and c∈C with sufficient
common objects (line 6), if their moving objects are the same
(i.e., v=c), we know that all the moving objects in v form a
dense group c by themselves at the consecutive timestamp.
Therefore, the density-connectivity of vext is immediately

validated without further re-clustering (lines 8-11). If a
current valid convoy candidate v is extended by a larger
snapshot cluster c (line 12), we perform a re-clustering of
the moving objects in vext on their snapshot positions at
the current timestamp (line 13), in order to confirm that all
moving objects of vext are density-connected by themselves
at the current timestamp. The extended valid convoy candi-
date vext is indeed valid only if the re-clustering results in
a single cluster equivalent to vext (line 15), which is then
added to the next valid convoy candidate set Vnext to be used
in the next iteration (line 16). If only a subset of moving
objects in vext from a cluster, vext is replaced with this
subset in line 18 so as to be subsequently validated. If the
re-clustering does not result in such a single matching cluster
(|Ct|=1) or the current valid convoy candidate v is extended
by a smaller snapshot cluster, the density-connectivity of the
extended valid convoy candidate vext is now validated by a
recursive call to DCVal in line 20, which obtains a set VC
of valid convoy candidates from vext. Each valid convoy vc
in VC is inserted to the set Vnext to be further extended
if its lifetime ends at the current timestamp (lines 23-24).
Otherwise, it is returned to the set Vval of valid convoys as
an output of validation as long as its lifetime is sufficient
(line 26). As in PCCD, the current valid convoy candidates
in V that are neither extended nor absorbed by any of clusters
in C and have the lifetime of at least k are returned to the
set Vpcc in lines 27-28. The current snapshot clusters in C
that are neither matched nor absorbed by any of the current
valid convoy candidates in V are added to the next valid
convoy candidates Vnext (lines 29-30), to be used in the next
iteration. Note that the algorithm returns as an output a set
Vval consisting of 1) truly valid convoys satisfying all five
constraints in Definition 2 and 2) valid convoy candidates
that may not satisfy the sufficient lifetime constraint due to
the recursive usage. Hence, it requires a post-processing to
remove such short valid convoy candidates from the final
set of Vval.

Table II
VALIDATION PROCESS OF DCVAL

Current/next valid convoys in V Validation

t1 v1←c1←〈{o1, o2, o3, o4, o5}, [t1, t1]〉
t2 v1←v1∩c2←〈{o1, o2, o3, o4, o5}, [t1,t2]〉 immediate
t3 v1←DCVal(v1∩c3)←〈{o1,o2,o3},[t2, t3]〉 recursive

t4
v1←v1∩c4←〈{o1, o2, o3}, [t2, t4]〉 re-clustering
v2←c4←〈{o1, o2, o3, o4}, [t4, t4]〉

Table II shows the validation process of DCVal, assuming
that all five moving objects in Fig. 1(b) form a partially
connected convoy 〈{o1,o2,. . .,o5},[t1,t4]〉 and using the pa-
rameters m=3 and k=2. At t1, the cluster c1 is set as a valid
convoy candidate v1. At t2, since the current valid convoy
candidate v1 is extended by the cluster c2 with the exactly
same moving objects, the extended convoy is immediately
validated without re-clustering. At t3, since the current

568640

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

convoy candidate v1 is extended by a smaller cluster c3, the
extended valid convoy candidate v1∩c3=〈{o1,o2,o3}, [t1,t3]〉
is validated by a recursive call to DCVal. As shown in
Fig. 1(b), the objects {o1,o2,o3} do not form a cluster by
themselves at t1. As a result, a valid convoy candidate
〈{o1,o2,o3}, [t2,t3]〉 with a reduced lifetime is returned and
added to the next valid convoy candidate set to be used
in the next iteration. At t4, the current valid convoy can-
didate v1 is extended by a larger cluster c4. Hence, the
density-connectivity of 〈{o1,o2,o3}, [t3,t4]〉 is validated by
re-clustering the snapshot positions of o1,o2,o3 only at the
current timestamp t4.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of our valid convoy discov-
ery algorithms on three real-world moving object trajectory
datasets. The performance of VCoDA is compared to that
of an existing convoy discovery algorithm CMC (Coherent
Moving Cluster) [7], [3]. All the algorithms were imple-
mented in MatlabTM and the experiments were run on a
Pentium IV machine with 3.2GHz CPU and 2 GB of RAM,
running on Windows Server 2003.

A. Dataset and Parameter Setting

Table III summarizes the information of the three datasets.
The hurricane dataset2 contains the Atlantic hurricanes’
position in latitude and longitude sampled at 6-hourly in-
tervals from the years 1950 through 2006. Each trajectory
was preprocessed to have timestamps relative to its starting
time to find more groups of hurricanes with similar devel-
opment in space and time. The truck dataset3 consists of
276 trajectories of 50 trucks delivering concrete to several
construction places around Athens metropolitan area in
Greece. The locations in latitude and longitude were sampled
approximately every 30 seconds for 33 days [1]. In our
experiment, the fleet of a truck object traced during a single
day was considered as a distinct trajectory to find more valid
convoys. The commute dataset4 consists of 210 trajectories
of two people tracing their daily commute in the Cook and
Dupage counties of Illinois, USA. The locations in latitude
and longitude were sampled every second by GPS systems
for 6 month. Each commute trajectory during a single day
was assumed to be obtained from a distinct moving object
in our experiment. In all three datasets, the un-sampled
positions at missing timestamps were linearly interpolated
using the nearby measured location values to be aligned at
a pre-defined set of timestamps.

Our valid convoy discovery algorithm require three input
parameters m, k, and ε to discover all valid convoys, each
consisting of at least m moving objects that are density-
connected w.r.t. the density constraints m and ε during

2http://weather.unisys.com/hurricane/atlantic/
3http://www.rtreeportal.org/
4http://cs.uic.edu/∼boxu/mp2p/gps data.html

Table III
SETTINGS FOR EXPERIMENTS

Hurricane Truck Commute

Number of objects 608 276 210
Average trajectory length 31 407 1679

Total observations 18,951 112,203 354,913
Timestamp interval 6 hrs. 30 sec. 1 sec.

Number of timestamps 124 2875 48099

Number of objects (m) 3 3 3
Lifetime (k) 8 180 600

Distance threshold (ε) 1.0∼1.5 1
104 ∼ 6

104 1∼5

at least k consecutive timestamps. We assume that the
parameters m and k determining the smallest and shortest
convoys of interest in the dataset are given by the domain
experts. In our experiments, the minimum number of objects
m is commonly set to 3 for all two datasets and the minimum
number of timestamps k (i.e., lifetime) is set to around
20-th quantile of the trajectory length. Given the number
of minimum moving objects m=3, the reasonable range
of distance threshold ε is estimated based on the density
distribution of snapshot positions at each timestamp using
the sorted 3-dist graph proposed in [8] for the hurricane
dataset. For the truck and commute datasets where the fleet
of vehicles are physically constrained on the road network,
it is determined by the width of roads inspected from the
visualization of trajectories on the spatial plane. The actual
parameter values used in our experiments are summarized
in Table III.

B. Effectiveness

In order to compare our valid convoy discovery algorithms
with CMC in terms of accuracy, we measure the precision
and recall; let Vval be a result set of all valid convoys
discovered by VCoDA and Vcmc be another set obtained by
CMC. Considering Vval as a baseline, precision is defined
as |Vcmc∩Vval|

|Vcmc| , indicating the probability that a convoy
discovered by CMC is also retrieved by VCoDA. Precision
attains a value 1 when the result set of CMC is entirely
valid. Similarly, recall is defined as |Vval∩Vcmc|

|Vval| , implying the
probability that a valid convoy discovered by VCoDA is also
retrieved by CMC. Recall scores a value 1 when all valid
convoys discovered by VCoDA are completely retrieved by
CMC. Table IV shows the results of accuracy on all three
datasets.

Over all three datasets, CMC generally found less number
of convoys than VCoDA. This is expected because VCoDA
additionally maintains unabsorbed snapshot clusters in the
intermediate set of convoy candidates to be subsequently
extended and output any unabsorbed convoy candidate on
the fly while scanning the whole time span. Due to the
same reason, CMC never discovered the complete set of
valid convoys found by VCoDA, which is demonstrated in
the low recall scores less than 1 and even closer to 0 in most
of parameter settings. Also, only one third of the convoys

569641

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

Table IV
COMPARISON OF ACCURACY

Hurricane: m=3, k=8 (48 hrs.)
ε 1.0 1.1 1.2 1.3 1.4 1.5

|Vval| 2 3 5 8 20 36
|Vcmc| 3 5 7 17 18 15

precision 0.33 0.40 0.29 0.12 0.11 0.20
recall 0.50 0.67 0.40 0.25 0.10 0.08

Truck: m=3, k=180 (1hr. 30 min.)
ε 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

|Vval| 2 25 76 145 179 220
|Vcmc| 1 12 14 16 18 18

precision 1.00 0.33 0.29 0.19 0.33 0.28
recall 0.50 0.16 0.05 0.02 0.03 0.02

Commute: m=3, k=600 (1min. 30 sec.)
ε 1 2 3 4 5 6

|Vval| 16 96 205 341 477 543
|Vcmc| 7 16 20 23 25 25

precision 0.43 0.25 0.15 0.26 0.28 0.32
recall 0.19 0.04 0.01 0.02 0.01 0.01

discovered by CMC are valid on average as indicated by
the low precision around 0.30, which is because of the
missing density-connectivity validation process in CMC. In
summary, VCoDA improves the precision by a factor of 3
on average and the recall by up to 2 orders of magnitude as
compared to CMC.

3 5 7 9 11

200

300

400

500

600

700

Number of moving objects in a convoy

C
on

vo
y

lif
et

im
e

VCoDA
CMC

Figure 4. Comparison of discovered convoys

Figure 4 compares the size and the lifetime of 145
VCoDA and 16 CMC convoys found over the truck dataset
with the distance threshold ε=0.0004 (see the bold-faced
numbers in Table IV). In this figure, the X-axis represents the
number of moving objects in a convoy and the Y-axis is the
convoy lifetime (number of timestamps). As expected, CMC
discovered only small convoys consisting of three moving
objects and missed all larger convoys, which was commonly
observed in other datasets. VCoDA discovers valid convoys
represented in the dataset that the existing convoy discovery
algorithm (CMC) is unable to find.

C. Processing Time

Figure 5 shows the processing time of VCoDA and CMC
on three datasets, where the processing time of VCoDA
is divided by a horizontal cut to denote the running time
of PCCD (first phase for discovering partially connected
convoys) and DCVal (second phase for density-connectivity

validation) in the lower and upper bars, respectively. Over
all three datasets, VCoDA took more time than CMC, which
was expected due to the newly added density-connectivity
validation of VCoDA. In general, the time complexity of
both VCoDA (particularly PCCD) and CMC is affected by
the total number of timestamps (T), the number of moving
objects (N), the number of snapshot clusters (|C|), and the
number of intermediate convoy candidates (|V|). While the
first three factors are the same in both algorithms, VCoDA
typically maintains much larger set V of convoy candidates
to discover all partially connected convoys. Table V sum-
marizes the maximum size of V encountered during the
process of PCCD and CMC. The increased processing time
of the first phase of VCoDA (i.e., PCCD) well explains the
increased processing time of the first phase of VCoDA.

Table V
COMPARISON OF MAXIMUM |V|

Hurricane: m=3, k=8 (48 hrs.)
ε 1.0 1.1 1.2 1.3 1.4 1.5

PCCD 125 129 149 168 180 1835
CMC 68 71 77 74 71 62

Truck: m=3, k=180 (1hr. 30 min.)
ε 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

PCCD 47 64 70 72 80 87
CMC 12 14 14 16 17 18

Commute: m=3, k=600 (1min. 30 sec.)
ε 1 2 3 4 5 6

PCCD 14 21 26 27 28 28
CMC 7 8 6 4 3 3

The density-connectivity validation by DCVal took up to
a factor of 2 less time than the partially connected convoy
discovery by PCCD in the hurricane dataset (Figure 5(a)),
where the average length of lifetime of partially connected
convoys to be validated is 9.6 timestamps and the average
number of moving objects is 4.4. In the truck dataset where
the average lifetime of valid convoy candidates consisting of
5 moving objects on average is 261 timestamps, the running
time of DCVal is comparable to that of PCCD. However,
DCVal took relatively much more time up to a factor of
5 than PCCD in the commute dataset where we obtained
valid convoy candidates consisting of 8 moving objects
on average and with average lifetime of 1103 timestamps.
These results might indicate that the overall running time
of VCoDA is more dominated by the density-connectivity
validation process for the partially connected convoys with
longer lifetime.

V. RELATED WORK

We have already reviewed the most relevant work (moving
cluster [4] and convoy [7], [3]) in Section I. Here, we
just briefly discuss some of the other related work. Laube
et al. [10] first introduced the notions of several relative
motion patterns within groups of moving objects and pro-
posed simple algorithms to discover these patterns. Here,

570642

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

40

50

60

70

ε

E
la

ps
ed

 T
im

e
(s

ec
.)

VCoDA (PCCD + DCVal)
CMC

(a) Hurricane

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
0

200

400

600

800

1000

1200

ε

E
la

ps
ed

 T
im

e
(s

)

(b) Truck

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

ε

E
la

ps
ed

 T
im

e
(s

ec
.)

(c) Commute

Figure 5. Comparison of processing time in seconds

the term, flock, was first used to denote a cluster of snapshot
locations of moving objects showing concurrence at a single
instance of time. Gudmundsson et al. [6] developed efficient
approximation algorithms to compute four spatio-temporal
motion patterns: flock, leadership, convergence, and en-
counter. Later, Gudmundsson et al. extended the notion
of snapshot flock to a long duration flock over a certain
time interval. Several exact and approximation algorithms
were proposed in [2] to discover longest duration flocks
and the computation was improved by mapping spatio-
temporal data into a high dimensional space and reducing the
search of longest duration flocks into a sequence of standard
range searches using a spatial indexing structure [11]. Wang
et al. [5] introduced a user group pattern, which is defined as
a group of users that are within a distance threshold from one
another for at least a minimum duration. This group pattern
generalizes the long duration flock in that the whole duration
is not necessarily consecutive in time but composed with
multiple time intervals. Although this group pattern relaxes
the consecutive time constraint, it is still spatially limited to
a group of fixed size and shape like flock. In addition, their
algorithms are not directly applicable to our valid convoy
discovery problem.

VI. CONCLUSIONS

In this paper, we showed that existing convoy discovery
algorithms are inaccurate at finding valid convoys. Hence,
we proposed a new algorithm VCoDA for the accuracy
discovery of valid convoys form a set of moving object
trajectories. In experiments on real datasets, VCoDA out-
performs the current convoy algorithm in terms of precision
and recall by a factor of 3 on average and up to 2 orders of
magnitude, respectively. We intend to improve the efficiency
of our VCoDA algorithm for future work.

ACKNOWLEDGMENT

This research has been funded in part by NSF grants IIS-
0238560 (PECASE), IIS-0534761, IIS-0742811 and CNS-
0831505 (CyberTrust), and in part from the METRANS

Transportation Center, under grants from USDOT and Cal-
trans. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajec-
tory pattern mining,” in KDD ’07, 2007, pp. 330–339.

[2] J. Gudmundsson and M. van Kreveld, “Computing longest
duration flocks in trajectory data,” in GIS’06, 2006, pp. 35–
42.

[3] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen,
“Discovery of convoys in trajectory databases,” Proc. VLDB
Endow., vol. 1, no. 1, pp. 1068–1080, 2008.

[4] P. Kalnis, N. Mamoulis, and S. Bakiras, “On discovering
moving clusters in spatio-temporal data,” in Advances in
Spatial and Temporal Databases, 2005, pp. 364–381.

[5] Y. Wang, E.-P. Lim, and S.-Y. Hwang, “Efficient mining of
group patterns from user movement data,” Data Knowl. Eng.,
vol. 57, no. 3, pp. 240–282, 2006.

[6] J. Gudmundsson, M. van Kreveld, and B. Speckmann, “Ef-
ficient detection of motion patterns in spatio-temporal data
sets,” in GIS’04, 2004, pp. 250–257.

[7] H. Jeung, H. T. Shen, and X. Zhou, “Convoy queries in spatio-
temporal databases,” in ICDE’08, April 2008, pp. 1457–1459.

[8] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases
with noise,” in KDD’96, 1996, pp. 226–231.

[9] H. Yoon and C. Shahabi, “Robust time-referenced segmen-
tation of moving object trajectories,” in ICDM’08, 2008, pp.
1121–1126.

[10] P. Laube and S. Imfeld, “Analyzing relative motion within
groups of trackable moving point objects,” in GIScience’02,
2002, pp. 132–144.

[11] M. Benkert, J. Gudmundsson, , F. Hubner, and T. Wolle,
“Reporting flock patterns,” in 14th European Symposium on
Algorithms, 2006, pp. 660–671.

571643

Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2010 at 05:26:03 UTC from IEEE Xplore. Restrictions apply.

